Embedded System Design for Wireless Applications

Jan M. Rabaey
BWRC
University of California @ Berkeley
http://www.eecs.berkeley.edu/~jan

DAC 2000, Los Angeles

The Distributed Approach to Information Processing

The "last meter" problem to information access

Source: Richard Newton
The Smart Home

Dense network of sensor and monitor nodes

Security
Environment monitoring and control
Object tagging
Identification

Wireless in the Home

Home-networked households in the United States, in thousands

Source: IEEE Spectrum, December 99
The Changing Metrics

Performance as a Functionality Constraint
(“Just-in-Time Computing”)

The Wireless System Design Challenge

The Battery Limitation

- Projected energy per digital operation (2004): 50 pJ
- Lithium-Ion: 220 Watt-hours/kg == 800 Joules/gr
- At 50 pJ/operation: 10 teraOps/gr!
 - Equivalent to continuous operation at 100 MOPS for 30 hours (or average power dissipation of 6 mW)
Some interesting numbers

- **Energy cost of digital computation**
 - 1999 (0.25µm): 1pJ/op (custom) … 1nJ/op (µproc)
 - 2004 (0.1µm): 0.1pJ/op (custom) … 100pJ/op (µproc)
 • Factor 1.6 per year; Factor 10 over 5 years
 • Assuming reconfigurable implementation: 1 pJ/op

- **Energy cost of communication**
 - 1999 Bluetooth (2.4 GHz band, 10m distance)
 • 1 nJ/bit transmission energy (thermal limit 30 pJ/bit)
 • Overall energy: 170 nJ/bit reception / 150 nJ/bit transmission (!)
 • Standby power: 300 µW
 - 2004 Radio (10 m)
 • Only minor reduction in transmission energy
 • Reduce transceiver energy with at least a factor 10-50

- **Trade-off**
 - @10m: 5000 operations / transmitted bit
 - @ 1m: 0.5 operations / transmitted bit

The Implementation Opportunities

System-on-a-Chip

- Multi-Spectral Imager
- 500 k Gates FPGA + 1 Gbit DRAM
- Preprocessing
- Analog
- 64 SIMD Processor Array + SRAM
- Image Conditioning
- 100 GOPS
- µC system +2 Gbit DRAM Recognition

Embedded applications where cost, performance, and energy are the real issues!
DSP and control intensive
Mixed-mode
Combines programmable and application-specific modules

SOC anno 2010
The System-on-a-Chip Nightmare

“Femme se coiffant”
Pablo Ruiz Picasso
1940

The “Board-on-a-Chip” Approach

Courtesy of Sonics, Inc
The Wireless Challenge

The Software Radio

- Idea: Digitize (wideband) signal at antenna and use signal processing to extract desired signal
- Leverages of advances in technology, circuit design, and signal processing
- Software solution enables flexibility and adaptivity, but at huge price in power and cost
- 16 bit A/D converter at 2.2 GHz dissipates 1 to 10 W
The Mostly Digital Radio

The Mostly Digital Radio

Analog

Digital

RF input ($f_c = 2$GHz)

LNA

chip boundary

$\cos[2\pi(2\text{GHz})t]$

$\sin[2\pi(2\text{GHz})t]$

Digital Baseband Receiver

I (50MS/s)

Q (50MS/s)

Analog Digital

Architectural Choices

Flexibility

1/Efficiency

Dedicated Logic

Direct Mapped Hardware

Hardware Reconfigurable Processor

Satellite Processor

Satellite Processor

Software Programmable DSP

MAC Unit

Addr Gen

Prog Mem

μP

Prog Mem

μP

General Purpose μP
The Energy-Flexibility Gap

![Energy-Flexibility Gap Diagram](image_url)

System Optimization Hierarchy

![System Optimization Hierarchy Diagram](image_url)
The fully programmable approach

- Flexible platform for experimentation on networking and protocol strategies
- Size: 3”x4”x2”
- Power dissipation < 2 W (peak)
- Multiple radio modules: Bluetooth, Proxim, …
- Collection of sensor and monitor cards
- Fully operational by late spring (including software support system)!

Digital Intercom — A Design Exercise in Communication/Component Based Design

- Known and tested specification of limited complexity allows focus on architectural implementation methodology
- Two-chip implementation leverages separates between analog (RF) and digital design concerns
- Duration of exercise: 1 year (summer ‘00)

Up to 20 users per cell @ 64 kbit/sec per link
TDMA selected as MAC protocol
Two-Chip Intercom

Direct down-conversion front-end
(Yee et al)

The Target Architecture

Multi-model Analog RF

Fixed Hardware

Physical Layer

Accelerators (bit level)

Timing recovery

Embedded µP

Appl.
Keypad Display
Coding
ARQ

Correlators
MUD
Filters
MAC Transport

Programmable Hardware
Digital Baseband

Stage 1: floating point blocks
Stage 2: fixed point blocks

Design Estimations (First order):

RF + ADC/DAC
 Transmit: 30 mW
 Receive: 70 mW

Digital (conservative)
 Transmit: 20 mW (100,000 transistors)
 Receive: 80 mW (700,000 transistors)

Physical layer timing analysis (from Simulink)

Abstracted Simulation Results Drive Protocol Design!

Estimates for the performance of the TCI Physical layer

<table>
<thead>
<tr>
<th>Rate</th>
<th>Duration</th>
<th>Additional Calculations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MHz</td>
<td>s</td>
<td></td>
</tr>
<tr>
<td>Chip</td>
<td>2.50E+07</td>
<td>25.00 4.00E-08 0.04</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Symbol</td>
<td>8.06E+05</td>
<td>0.81 1.24E-06 1.24</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bit</td>
<td>1.61E+06</td>
<td>1.61 6.20E-07 0.62</td>
</tr>
<tr>
<td>Pilot symbol</td>
<td>1.24E-06</td>
<td>1.24</td>
</tr>
<tr>
<td>Pilot sequence length</td>
<td>1.86E-05</td>
<td>1.86</td>
</tr>
<tr>
<td>Pilot sequence</td>
<td>1.90E-05</td>
<td>1.90</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The selected protocol will send a pilot sequence, a small number of dummy data bits (PD), another pilot sequence, and the real data bits (DAT) with the constraint that DAT < safe # sequential symbols

| | | |
| | | |

The time from RX to TX transition until:
- First DAT clock on transmitter
- Last DAT clock on transmitter
- Radio turn-around

The time from TX on radio A until:
- RECV on radio B
- DAT2 RECV on radio B

The time from TX on radio A, and RX on radio B until:
- DAT2 RECV on radio B

Tool: Microsoft Excel

Radio Turn-around Time

Abstracted Simulation Results Drive Protocol Design!
Physical Layer Design

Digital baseband bridges gap between RF/Comm and protocol/network

Physical to Protocol Interface

- Different tools
- Verification relying on co-simulation
- Interface design critical to ensuring final designs work together
 - Define small number of interface signals
 - Clearly specify behavior
The Intercom Protocol Stack

- User Interface Layer
 - UI

- Transport Layer
 - Transport

- Mac Layer
 - Filter
 - MAC

- Data Link Layer
 - Transmit
 - Receive
 - Synchronization
 - Tx_data
 - Tx/Rx
 - Rx_data

Refinement-based Protocol Design Methodology

A CFSM-based approach

Advantages
- Combines synchronous and asynchronous models
- Constrained model enables verification
Co-design Finite State machines

- Three-level hierarchy
 - top level: asynchronous, partially ordered
 (bounded buffer non-blocking single-read communication)
 - middle level: synchronous FSM
 (atomic event- and condition-based transition)
 - bottom level: Synchronous DataFlow-like
 (FSM provides tokens and selects active sub-network)

(from ee249: http://www-cad.eecs.berkeley.edu/Respep/Research/hsc/class/index.html)
POLIS/VCC Design Flow

* (from the VCC manual)

Describing the Behavior

<table>
<thead>
<tr>
<th>Layer</th>
<th>C-code (lines)</th>
<th>State-transition Diagram (states)</th>
</tr>
</thead>
<tbody>
<tr>
<td>User Interface</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>Modem</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>Transport</td>
<td>300</td>
<td></td>
</tr>
<tr>
<td>MAC</td>
<td>270</td>
<td>42</td>
</tr>
<tr>
<td>Transmitter</td>
<td>120</td>
<td>16</td>
</tr>
<tr>
<td>Receiver</td>
<td>140</td>
<td>2</td>
</tr>
<tr>
<td>Synchronization</td>
<td></td>
<td>17</td>
</tr>
</tbody>
</table>

- GFSM
- VCC, Polis
Formal Verification

• **System satisfies certain properties?**
 – System described in some formal mathematical languages (e.g. Esterel)
 – Properties written in some formal logic (e.g. LTL) or formal model (e.g. Esterel)

• **Property Verification**
 – Invariant (only one remote can send voice data in any time slot)
 – Response (if a remote sends a request to the base station, then eventually there is an acknowledgement)
 – deadlock freedom

• **Refinement Checking**
 – Does the (low-level) implementation conform with the (high-level) specification?
 (Do the mapped CFSMs function the same as the specification?)

• **Mocha (Henzinger): Modularity in Model Checking**

Example of Property Verification

Remote returns to the **disconnect state** if user presses the **disconnect button**.

\[AG(\text{Disc} \rightarrow \text{AF(Not Conn)}) \]

NOT OK
Why it Fails?

- Remote accepts Disc from the user even if it is not connected
- After the remote has sent DiscReq and waits for acknowledgement
- However, base station ignores DiscReq if remote is not registered

Targeted Implementation Platform

Embedded Processor

Memory Sub-system

Interconnect Network

Baseband Processing

Configurable Logic (Physical Layer)

Programmable Protocol Stack

Benefit: Build library of computational and networking modules (and models)
Describing the Architecture

- **Xtensa embedded CPU (Tensilica, Inc)**
 - Configurability allows designer to keep “minimal” hardware overhead
 - ISA (compatible with 32 bit RISC) can be extended for software optimizations
 - Fully synthesizable
 - Complete HW/SW suite
- **VCC modeling for exploration**
 - Requires mapping of “fuzzy” instructions of VCC processor model to real ISA
 - Requires multiple models depending on memory configuration
 - ISS simulation to validate accuracy of model

Describing The Architecture

The On-Chip Network

Example: “The Silicon Backplane” (Sonics, Inc)
Describing the Architecture

- SONICS model in VCC

- Flexible bandwidth arbitration model
 - TDMA slot map gives slot owner right of refusal
 - Unowned/unused slots fall to round-robin arbitration
 - Latency after slice granted is user-specified between 2-7 Bus Clock cycles

TCI Architecture

- ASIC
- SiliconBackplane
- Tensilica Xtensa
Exploring Architectural Mappings

Software Processor
Application
Transport
Mu-law
MAC
ASIC
Accelerators
Rest

Processor Utilization - Estimation

Processor Utilization
32.7%
2.7%
5.46%

Transport User Interface
ARM @1MHz

Mulaw Transport User Interface
ARM @11MHz

0.5 MAC Mulaw Transport User Interface
ARM @200MHz

0.9 MAC Mulaw Transport User Interface
ARM @2GHz

Latency insensitive
Peak performance
RTOS overhead
Clock Frequency
Implementation Fabrics for Protocols

A protocol = Extended FSM

Intercom TDMA MAC

Implementation alternatives

<table>
<thead>
<tr>
<th></th>
<th>ASIC</th>
<th>FPGA</th>
<th>ARM8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power</td>
<td>0.26mW</td>
<td>2.1mW</td>
<td>114mW</td>
</tr>
</tbody>
</table>

ASIC: 1V, 0.25 μm CMOS process
FPGA: 1.5V 0.25 μm CMOS low-energy FPGA
ARM8: 1V 25 MHz processor; n = 13,000
Ratio: 1 - 8 - >> 400

Idea: Exploit model of computation: concurrent finite state machines, communicating through message passing
HW Mapping Experiment: STD to Std. Cell

Area Comparison – Manual versus Automated

HW Mapping Experiment: STD to FPGA

Area Comparison – Manual versus Automated
HW Mapping Experiment: Power

FPGA versus PLD

![Bar chart comparing Power Consumption between FPGA and PLD](chart.png)

Hierarchy in System Optimization

Network level
- Functional & Performance Requirements
- Performance analysis
- Node Architecture

Node level
- Functional & Performance Requirements
- Node Architecture
- Performance analysis

Constraints
The Applications and Specs

The Obvious Choice - The Smart Home and Network Appliances

Dense network of sensor and monitor nodes

Security
Environment monitoring and control
Object tagging
Identification

System Requirements and Constraints

- Large numbers of nodes — between 0.05 and 1 nodes/m²
- Cheap (<0.5$) and small (< 1 cm³)
- Limited operation range of network — maximum 50-100 m
- Low data rates per node — 1-10 bits/sec average
 - up to 10 kbit/sec in rare local connections to potentially support non-latency critical voice channel
- Crucial Design Parameter:
 Spatial capacity (or density) — 100-200 bits/sec/m²
The Software-Defined Radio

System-Level Design Space Exploration

Implementation in hard- and software

• Based on well-defined abstraction layers
• Step-wise refinement (partitioning, resource mapping and sharing) enables correctness verification
• Automatic synthesis of adaptive protocols in hard- and software
PicoRadio Energy Optimization

The Cost of Communication

Assumes R^4 loss due to ground wave (@ 1 GHz)

Transmit Power

-70dBm
-30dBm
10dBm
90dBm

Distance

1m 10m 100m 1Km 10Km

Communicating over Long Distances

Multi-hop Networks

Example:
- 1 hop over 50 m
 1.25 nJ/bit
- 5 hops of 10 m each
 $5 \times 2 \text{ pJ/bit} = 10 \text{ pJ/bit}$
- Multi-hop reduces transmission energy by 125!
 (assuming path loss exponent of 4)

But … network discovery and maintenance overhead
Comparing the approaches from an energy perspective

- Energy = Eb * Packet Size
- Reactive Routing good for rarely used routes
- Proactive Routing good for frequently used routes
- Need solution that is more adequate for problem at hand: class-based and location-based addressing.
Summary

• Low-energy design ascends to prime time forced mainly by the last-meter problem
• System-on-a-Chip approach enables and demands heterogeneous implementation strategies, sometimes involving non-intuitive and innovative design platforms
• Design exploration over various fabrics and partitions has dramatic impact on dominant metrics, such as energy and cost
• It requires orthogonalization of function and architecture, supplemented with performance models (cost, time, energy)
• This methodology holds at all levels of the system hierarchy