Berkeley Emulation Engine

Berkeley Wireless Research Center
-Chen Chang, Kimmo Kuusilinna, Brian Richards, Kevin Camera,
Nathan Chan, Allen Chan, Robert W. Brodersen

What’s BEE?
- A real-time FPGA-based hardware emulator, with speed up to 60 MHz
- Emulation capacity of 10 Million ASIC gate-equivalents per module, corresponding to 600 Gops (16-bit adds).
- 2400 external parallel I/O providing 192 Gbps raw bandwidth.
- Automated design flow from Simulink to FPGA emulation, integrated with INSECTA ASIC design flow.

BEE Applications
- Real-time hardware emulation:
 - Novel Communication Systems with analog front-end hardware (MCMA, UWB, 60GHz)
 - Digital signal processing systems
 - Real-time control systems
 - Neuron-like network processing
- Hardware acceleration:
 - Large communication/signal processing system simulation
 - Hardware-in-the-loop cosimulation with software system
 - Complex parallel computing algorithms

The BEE Design Environment

BEE System Assembly
-Riser I/O Card
-MPB
-StrongARM Module
-Linux OS

Main Processing Board
-Local Mesh
-48 bit buses
-56 bit inter-Xbar buses
Hardware Performance

- Board-level Main Clock Rate: 160MHz+
- On Board connection speed:
 - FPGA to FPGA: 100MHz
 - XBAR to XBAR: 70MHz
- Off board connection speed: [3 ft SCSI cable loop back through riser card]
 - LVTTL: 40MHz
 - LVDS: 160MHz ~ 220MHz

Hardware Capacity

- Reference Design:
 - 10240 tap FIR filter
 - 512 taps per FPGA
- Slice utilization: 99% of 19200 slices
- Max Clock Rate: 28.5MHz
- ASIC Gate: 401K per FPGA, 8M total
- MOPS: 583,680 total (16bit add & 12bit cmult)
- Power: 2.5W per FPGA, 50W total

Design Flow Goals

- Fully automatic generation of FPGA and ASIC implementations from Simulink system level design
- Cycle accurate bit-true functional level equivalency between ASIC & BEE implementation
- Fast design turn-around time
 - Chip-in-a-Day
 - BEE-in-an-Hour

Design Flow: Global Perspective

Virtual Components \rightarrow BEE Compiler (System Generator) \rightarrow Performance Estimation

- Simulink Schematics
- VHDL Netlist
- CORE, VHDL Descriptions \rightarrow FPGA Backend Flow \rightarrow Xilinx Bitstream
- MC, VHDL Descriptions \rightarrow ASIC Flow \rightarrow GDSII

Design Flow: Detailed View

Virtual Component Library

- Parameterized system level blocks:
 - Bit-width
 - Pipeline stages (latency)
 - Output bits truncation
- Customizable block set library
 - Different Architecture
 - Different Technology Target
Basic Blocks

Communication & DSP Blocks

Control Logic Design

Run-time Data I/O Interface

Data I/O Interface: Hardware

Data I/O Interface: Software

- **Basic Blocks**
 - Shifter
 - VHDL
 - Concat
 - Enable
 - Const
 - Counter
 - Delay
 - Mux
 - Down
 - P to S
 - Convert
 - ReInt
 - S to P
 - Sync
 - Slice
 - Up Smp
 - Register
 - FIFO
 - DPRAM
 - ROM
 - RAM
 - Accum
 - CMult
 - AddSub
 - Inverter
 - Logical
 - Negate
 - Mult
 - Relat'n
 - Scale
 - Sin Cos
 - Shift
 - Thresh

- **Communication & DSP Blocks**
 - FIR
 - Shift
 - CIC
 - DDS
 - Puncture
 - Depuncture
 - Conv. Encoder

- **Control Logic Design**
 - Simulink level: StateFlow diagram, encapsulated in a subsystem with Xilinx gateways
 - RTL VHDL automatically generated by SF2VHD
 - Fully integrated with the BEE ISE tools

- **Run-time Data I/O Interface**
 - New and improved infrastructure for transferring data to and from the BEE
 - Control all data transfers from within a local Matlab GUI
 - Accepts standard Simulink data structures for intrinsic reuse of existing test vectors
 - Library macro contains the entire hardware interface in one fully parameterized block

- **Data I/O Interface: Hardware**
 - Pin Gateways
 - Bus Protocol Controller
 - Source RAM
 - Sink RAM

- **Data I/O Interface: Software**
 - Specify input source, BEE hostname, and data bus parameters in Matlab GUI
 - Utilizes a custom MEX socket library for network connectivity
 - Uses a simple packet header to distinguish control frames and byte streams
 - StrongARM (running embedded Linux) starts a persistent, lightweight server
 - Matlab clients connect via TCP and either send a data stream or read request
 - Incoming data is translated into the hardware protocol and broadcast to FPGA
ASIC Flow: INSECTA

- Tcl/Tk code drives the flow
- Same scripting language used by several EDA tools: First Encounter, Nanoroute, ModelSim, Synopsys
- GUI controls technology selection, parameter selection, flow sequencing
- A real “Push Button” flow...
- Users can refine flow-generated scripts

ASIC Tool Flow: Placement

- Internally developed ASIC flow:
 - First Encounter (FE)
 - Nanoroute
 - Physical Compiler
- Timing Driven!
 - FE provides accurate wire parasitic estimates
 - Placement by FE or Physical Compiler

ASIC Flow: Routing in 130nm

- Nanoroute: Ready for 130nm, 90nm designs
- Stepped metal pitches
- Minimum area rules
- Complex VIA rules
- Avoids antenna rule violations
- Cross-talk avoidance: to be evaluated

ASIC Flow: Back-end

- Using Unicad backend directly for DRC, LVS, Antenna rule checking
- Easier to track technology updates from ST.
- Critical for evaluating internally developed technology files for FE, Nanoroute

BCJR MAP Decoder

- E2PR4 Channel Encoder - Decoder
- Fully enclosed design
- Uniform RNG input vector
- Channel encoder
- AWGN filter
- Channel decoder
- BER collection mechanism
- Part of: Full 3G Turbo Decoder

BCJR As Case Study

- 13.2 MHz system clock
- SNR 14db → -1db
- 10^9 Samples
- 20 minute run-time
FPGA Implementation of a Narrow-Band Transmission System

Purpose
- BEE Design Flow
- Measurements for MCMA RF Front-End Specification

Data Rate
- 1.8 Mbit/s, 500 Kbit/s

Carrier Freq.
- 2.45 GHz

Bandwidth
- 1.8 MHz

Modulation
- DBPSK,OOK

Frame Synch.
- PN Sequence

2.4GHz Base-band Transmitter

CPU time: 57 min
- Core Utilization: 0.344418 (Pad limited)
- Size (From SoC Encounter):
 - Core Height: 565.8 u
 - Core Width: 489.54 u
 - Die Height: 1322.66 u
 - Die Width: 1242.3 u

Synopsys estimates:
- Total Dynamic Power = 610.5163 uW (100%)
- Cell Leakage Power = 15.9364 uW
- Critical path: 9.21 ns

How to get started?

- **Documentation web site**
 - http://bwrc.eecs.berkeley.edu/Research/BEE
- **Tutorials**
 - Lesson 1: Flow Basics
 - Lesson 2: Runtime Debug on BEE
 - Lesson 3: Control Logic Design
 - Lesson 4: Run-time Data I/O on BEE

BEE Compiler Framework

- **Increase Design Scalability**
 - High-level blocks
 - Vector Signals
- **Reduce design time**
 - Faster run time
 - Efficient/partial synthesis
 - Modular design reuse
- **Feature additions**
 - Tri-state pads/signal support
 - Global pad assignment
 - Automatic design partition
 - Script based hardware generator