Announcements

- Homework #2 due next week
- Project will be posted this week
Outline

- PLL and DLL components
- Introduction to Viterbi decoder

Additional PLL material:
 - ISSCC’04 tutorial by Dennis Fischette
 http://www.delroy.com
 - References posted on the web
 - Chapter 12 in the textbook

Loop Components

- Phase Comparator
 - Produces UP/DN pulses corresponding to phase difference
- Charge Pump
 - Sources/sinks current for duration of UP/DN pulses
- Loop Filter
 - Integrates current to produce control voltage
- Voltage-Controlled Delay Line
 - Changes delay proportionally to voltage
- Voltage-Controlled Oscillator
 - Generates frequency proportional to control voltage
Timing Loop Components

- **Phase Comparator**
 - measures the time difference between two signal transitions
 - for periodic signals measures the phase of one signal with respect to the other
 - the sensor for most timing loops

- **Delay Lines**
 - adjust the delay between two points in a system
 - the actuator for most timing loops
 - except for PLLs that use VCOs

- **Loop Filters**
 - smooth response of the timing loop
 - stabilize the loop (for PLLs)

[Dally]

Phase Comparators

- **Output describes phase difference between two inputs**
 - may be analog or digital
 - may linearly cover a wide range, or just a narrow phase difference

[Dally]
XOR Phase Detector

- Sensitive to duty cycle

![Diagram of XOR Phase Detector](image)

Flip-Flop Phase Comparator

- Feed ϕ_1 into the clock input
- Feed ϕ_2 into the data input
- With single-edge triggered FF, if Q is low, ϕ_1 is ________.
- Note that when $\Delta \phi = 0$, FF is put in a metastable state
- If same FF used for receiver and phase comparator, aperture offset is compensated for.
- Bang-bang loop control
Other Phase Comparators

- Sequential phase-only comparator
 - asynchronous state machine
 - pulses “up” or “down” output from transition on one input to transition on the other

- Sequential phase-frequency comparator
 - like the sequential phase-only comparator
 - but also keeps track of number of transitions on the two inputs and attempts to make them equal
 - don’t use this for a DLL!!!

Phase-Frequency Detector

- Schematic

- State-transition diagram
Dead-Zone in PFD

“Dead-zone” occurs when the loop doesn’t respond to small phase errors - e.g. 10 ps phase error at PFD inputs:

- PFD cannot generate 10 ps wide *Up* and *Down* pulses
- Charge-pump switches cannot turn on and off in 10 ps
- Solution: delay reset to guarantee min. pulse width (typically > 150 ps)

[Fischette]

Charge Pump

- Converts PFD digital *Up/Down* signals into charge
- Charge is proportional to duration of *Up/Down* signals
 \[Q_{cp} = I_{up} \cdot t_{up} - I_{dn} \cdot t_{dn} \]
- The LPF converts integrates currents
- Charge pump requirements:
 - Match currents \(I_{up} \) and \(I_{dn} \)
 - Reduce control voltage coupling
 - Supply noise rejection, PVT insensitivity
 (Simple or bandgap biased)
Charge Pump: Better Switches

- Unity-gain buffer controls the voltage over switches
- Current mirrored into I_{up}/I_{dn}

Young, JSSC 12/92

Charge Pump: Reversed Switches

Ingino, JSSC 11/01
Loop Filter

- Integrates charge-pump current onto C_1 cap to set average VCO frequency ("integral" path).
- Resistor provides instantaneous phase correction w/o affecting avg. freq. ("proportional" path).
- C_2 cap smooths IR ripple on V_{ctl}
- Typical value R_{lpf} in kΩ

Loop Filter: Dual CP

- Transformation into PI

- Dual charge pump architecture
Low-Pass Filter Smoothing Cap (C_3)

- “Smoothing” capacitor on control voltage filters CP ripple, but may make loop unstable
- Creates parasitic pole: $\sigma_p = 1/(R C_2)$
- $C_3 < 1/10C_1$ for stability
- $C_3 > 1/50C_1$ for low jitter
- Smoothing cap reduces “IR”-induced VCO jitter to < 0.5% from 5-10%
- $\Delta f_{vco} = K_{vco}I_{cp} T_{err}/C_3$
- Larger C_3/C_1 increases phase error slightly

Fischette, ISSCC’04

Filter Capacitors

- Traditionally thin gate capacitance has been used
 - Below 130nm gate leakage is a problem
 - $C1$ in the range of tens of pF
- Alternative: thick oxide or metal cap
 - Area penalty
Variable Delay Elements

- Need:
 - a delay element
 - a method to vary the delay

- Delay elements
 - inverter
 - source-coupled amplifier

- Methods to vary delay
 - multiplexing a tapped delay line
 - varying the power supply to an inverter chain
 - varying the capacitance driven by each stage
 - varying the resistive load of a source-coupled amplifier

- Characterized by
 - max and min delay
 - typically a 2:1 throw
 - stability (jitter)

Single-ended vs. differential

- In CMOS inverter 1% of change in supply changes the delay by 1%
 (keep this in mind when using clock buffering)

- Current starved inverters and RC-loaded inverters are worse than 1%-for-1%.

- Improve by adding stabilization
Example VCO

- Ring-oscillator-based VCO: RC loaded

Regulated Delay Line

- Sidiropoulos'00
VCO: simple differential delay

- Change current
- Or better: Resistances
- Need linear, variable resistors

![VCO Diagram]

Delay Elements

- Maneatis, JSSC’95

![Delay Elements Diagram]
Replica Bias for the Delay Element

- Replica biasing improves supply and substrate rejection

Interpolation: Place an edge in between two existing edges

0.2\%delay/\%supply
Horowitz, IEEE Micro’98
Viterbi Algorithm

- Example of dynamic programming [Bellman'57]
- Invented by A. Viterbi in 1967
- Explained by Forney in 1972, 1973
- Used for:
 - Decoding convolutional codes
 - Decoding trellis codes
 - Maximum likelihood detection
 - Speech recognition, etc.
- Types:
 - Hard-input, hard-output
 - Soft-input, hard-output
 - Soft-input, soft-output
Trellis

- States + edges
- No loops
- Weights in minutes

Shortest Time to Get to Berkeley?

- What is the best path to take to:
 - Union City?
 - Hayward?

- Choose the minimum cost at each point (state)
Shortest Time to Get to Berkeley?

What is the best path to take to:
- Union City?

What is the best path to take to:
- Hayward?
Shortest Time to Get to Berkeley?

The Viterbi Algorithm

Illustrated by 2-state trellis

\[sm_{n} = \min \left(sm_{n-1} + bm_{1}, \; sm_{n-1} + bm_{3} \right) \]
\[sm_{n} = \min \left(sm_{n-1} + bm_{2}, \; sm_{n-1} + bm_{4} \right) \]
Digital Baseband Transceiver

- From channel (VCO)
- Low-Pass Filter
- ADC
- FIR Filter
- Detector
- (Viterbi Decoder)
- Data Postprocessor
- Timing Recovery
- Serial/Parallel
- Sync Detection
- Decoder
- Descrambler
- ECC Decoder
- ECC Encoder
- Data Interface

Convolutional Codes

- **Adding redundancy**
 - \(d_i \)
 - \(d_{i+1} \)
 - \(d_{i+2} \)
 - \(1+D^2 \)
 - \(0110 \)
 - \(0100 \)
 - \(0111 \)
 - Channel: \((00, 11, 10, 10) \)

- **Generators:**
 - \(G_1 = 101 \)
 - \(G_2 = 111 \)
State Transition Diagrams