Announcements

- Project phase 1 is posted
 - Due April 1, 20-min presentation in class and a written report.
 - When simulating, use a 127-bit PR sequence
Project

Channel: S21
Normalized SBR @ 6.25Gb/s 2-PAM & 4-PAM Nyquists

2-PAM SBR

4-PAM SBR

2-PAM 6.25Gb/s with Tx, Rx Eq

Tx Eq only

Tx + Rx Eq
4-PAM 6.25Gb/s with Tx, Rx Eq (prbs sequence)

Error Control

➢ Textbooks
 ➢ Lin, Costello, “Error Control Coding”
 ➢ Wicker, “Error Control Systems”
 ➢ Houghton, “Error Control for Engineers”

➢ Basics in e.g.
 ➢ Lee, Messerschmitt, “Digital Communications”
 ➢ Proakis, “Digital Communications"
Error Control

Error Detection
- The receiver has the capability to **detect** any code block that contains fewer than a predetermined number of symbols in error.

Forward Error Correction
- A system of error control for data transmission wherein the receiver has the capability to **detect and correct** any code block that contains fewer than a predetermined number of symbols in error.

Transmitter has to add redundancy to the transmitted data
- This defines the code rate
 - k - user bits
 - n - channel bits
 - r - redundancy bits, $r = n - k$
 - $R = k/n$ – code rate

Example: parity check in RS-232
- 8 bits of data are replaced with 9-bit codewords
 - 256 symbols are chosen out of a set of 512 that satisfy the property of having even parity
 - $R = 8/9$
Hamming Distance

- Minimum number of bits that has to be flipped in one codeword to get a valid codeword
- $d_{\text{min}} = 2$ in parity
- If we receive a message we can detect that it is invalid, but we have no way to figure out which one was sent
- There are 9 nearest neighbors with $d = 1$

Error Detection vs. Error Correction

- To detect t errors:
 - $d_{\text{min}} > t$
 - $t = 1$ for parity code ($d_{\text{min}} = 2$)
- To correct t errors:
 - $d_{\text{min}} > 2t$
 - Parity code cannot correct errors
 - Need $d_{\text{min}} = 3$: the correct symbol is one bit away, others are at least 2 bits away
Hamming Bound

- There is a total of 2^n symbols, 2^k are valid
- How to maximize d_{min}?
- Number of neighbors with distance d:
 \[
 \frac{n!}{d!(n-d)!}
 \]
- If the code corrects t errors
 \[
 \sum_{d=0}^{t} \frac{n!}{d!(n-d)!} \leq 2^{n-k}
 \]

Hamming Codes

- There are some codes that exactly satisfy Hamming bound, or perfect codes (n, k, t):
 - $(3, 1, 1), (7, 4, 1), (15, 11, 1)$
 - Hamming codes: $(2^m - 1, 2^m - m - 1, 1)$
 - Golay code: $(23, 12, 3)$ – corrects up to 3 errors
Perfect codes

- No extra symbols in 2^n symbol space
- Every symbol is remapped to a valid symbol
- No ability to detect more than t errors
- E.g. Golay code $\langle 23, 12, 3 \rangle$ can be extended to $\langle 24, 12, 3 \rangle$ by adding a parity bit

Gilbert Bound

- The smallest symbol space $(2n)$ that guarantees the existence of a t-error correcting code with k user bits

$$\sum_{d=0}^{2t} \frac{n!}{d!(n-d)!} \leq 2^{n-k}$$

- Most codes are between the Hamming and Gilbert bounds
 - If a message has more if t detected errors, it will not be recovered (but will be flagged)
Some Coding Terms

- Block codes are memoryless
 - Combinatorial mapping
- Systematic codes include the user data and add some redundancy
- Convolutional codes have finite memory
 - We introduced them before Viterbi decoders

Syndrome

- \(n - k \) decoded redundant bits
- If no errors syndrome is 0
- If there are errors, syndrome points to bit position(s)
- To find a position of one error in 15 bits, need 4 extra bits \(- (15, 11, 1) \) code
Coding Gain

- Example: DVB-S2 (satellite TV broadcast)
 - DVB-S1 uses QPSK
 - DVB-S2 – more programs, HDTV, in the same band, same dish, same satellites
 - 8-PSK loses 2.5dB in SNR at required BER, to increase spectral efficiency by 50%
 - Forward error correction has to pick up the BER loss better than 2.5dB loss in SNR
Error types

- **Random errors**
 - Additive white Gaussian noise (AWGN)

- **Error bursts**
 - Timing errors (e.g. PLL cycle slip, loss of lock, ...)
 - Supply disturbances
 - Thunders
 - Thermal asperities in disk drives
 - Scratches on a CD, DVD

- **Bursts are randomized by using interleaving**

Error Detection Schemes

- **Parity**

- **Two-dimensional (horizontal/vertical) parity**
 - Vertical parity (checksum) is added at the end of a block

1	1	0	0	1	1	0	1
1	0	0	1	0	0	1	1
0	0	0	1	1	1	0	0
1	1	1	1	0	1	0	1

 Detected parity: 10110111
 Encoded parity: 10010110

- **Cyclic redundancy check (CRC)**
Coding Overhead

- Byte-level parity adds 11% of overhead for detecting one error
- This expands the required bandwidth (depending on the modulation scheme)
- Increases in-band noise

![Graph showing BER vs SNR for Coded and Uncoded signals]

Error Detection Schemes

- Cyclic redundancy check
- Symbol (message) bits are d_i, $i = 1, m - 1$.
- Add n bits such that the complete message is divisible by a generator polynomial (GP) in the GF(2n)
 \[CRC = \sum_{i=n}^{m-1} d_i \alpha^i \]
- The complete message
 \[\sum_{i=0}^{m-1} d_i \alpha^i = 0 \]
CDC Detection Performance

- Usually a 2-byte (16-bit) CRC is used with 1k-2k blocks
- 0.8% - 1.6% overhead
- Detects all error bursts shorter than the length of GP
- Errors can be corrected as well

Error Correction

- Correction by parity
 - More about advanced parity checks later
- Correction with CRC
- Reed-Muller codes
 - Low rate
- Reed-Solomon codes
 - Most common in practice
Reed-Solomon Codes

- Invented ~1960
- A special case of BCH (Bose-Chaudhury-Hocquenghem) codes
- Starts with bits, d_i
 \[
 \sum_{i=0}^{m-1} d_i \alpha^i = 0
 \]
- And replaces with symbols, p_i
 \[
 \sum_{i=0}^{m-1} p_i \alpha^i = 0
 \]