Agenda

- Backplane channel review
- Link system models and noise
- Performance analysis
Backplane Environment - Recap

- Line attenuation
- Reflections from stubs (vias)

Backplane Channel

- Loss is variable
 - Same backplane
 - Different lengths
 - Different stubs
 - Top vs. Bot
- Required signal amplitude set by noise
- Need to architect the link to work over all channels
 - Need tools to estimate link performance over all channels
Inter-symbol Interference (ISI) - Recap

- Channel is low pass
 - Our nice short pulse gets spread out

- Dispersion – short latency (skin-effect, dielectric loss)
- Reflections – long latency (impedance mismatches – connectors, via stubs, device parasitics, package)

![Pulse response graph](image)

T_{symbol} = 160\text{ps}

ISI

- Middle sample is corrupted by 0.2 trailing ISI (from the previous symbol), and 0.1 leading ISI (from the next symbol) resulting in 0.3 total ISI
- As a result middle symbol is detected in error
Crosstalk

- Don’t just receive the signal you want
 - Get versions of signals “close” to you
 - Vertical connections have worse coupling
 - “Close” in these vertical connection regions

Frequency View of Crosstalk

- For this example:
 - > 4GHz, noise is as large as the signal
Agenda

- Backplane channel review
- Link system models and noise
 - Previous standard approaches
 - Statistical modeling
- Performance analysis

Parameter Definition for VT Based Budget

- Voltage parameter definitions
 - Simultaneous switching output (SSO) noise
 - Receiver sensitivity (offset + overdrive)
 - Channel loss
 - Crosstalk
 - Back-to-back read
- Timing parameter definitions
 - tQ: transmitter output timing
 - tSH: receiver output timing
 - tCE: channel timing error
 - tJ: clock source jitter
RDRAM VT Budget

<table>
<thead>
<tr>
<th>Component of Timing Budget</th>
<th>RAC to RDRAM ps</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bit time</td>
<td>1250.0</td>
<td></td>
</tr>
<tr>
<td>RAC tQ</td>
<td>500.0</td>
<td>40.0%</td>
</tr>
<tr>
<td>RDRAM tSH</td>
<td>400.0</td>
<td>32.0%</td>
</tr>
<tr>
<td>tCE</td>
<td>290.0</td>
<td>23.2%</td>
</tr>
<tr>
<td>tJ</td>
<td>60.0</td>
<td>4.8%</td>
</tr>
<tr>
<td>Margin</td>
<td>0.0</td>
<td>0.0%</td>
</tr>
<tr>
<td>Total</td>
<td>100.0%</td>
<td></td>
</tr>
</tbody>
</table>

- Vterm=1.2V and 36D (channel)
- At 800Mb/s
 - tCE is at 23% of bit time
 - vCE is at 62.5% Vswing (900mV)

Fiber Channel – Methodologies for Jitter Specification

- Total jitter = Deterministic (DJ) + random jitter (RJ)
- DJ: Non-Gaussian, bounded in amplitude and has specific causes (duty cycle distortion, data dependent, sinusoidal and uncorrelated (power supply noise injection))
- DJ is measured as a peak-to-peak value and adds linearly
- RJ: Gaussian and measured as an RMS value
- RJ: Peak-to-peak jitter = 14 * RMS jitter for a BER of 10^{-12}
- Total jitter = peak-to-peak DJ + peak-to-peak RJ
- Jitter measurement definitions
 - Jitter output
 - Jitter transfer
 - Jitter tolerance (ability of a CDR to successfully recover the data in the presence of jitter)
 - Create a tolerance mask by examining the CDR lock at different frequencies vs. sinusoidal jitter magnitude
Jitter measurement definitions

- Jitter generation (jitter added by the PLL due to phase and supply noise)
- Jitter transfer (jitter at the output of the PLL due to refClk noise)
- Jitter tolerance (ability of a CDR to successfully recover the data in the presence of jitter)
 - Create a tolerance mask by examining the CDR lock at different frequencies vs. sinusoidal jitter magnitude

Fiber Channel Jitter Specification for 1.0625 Gbps

<table>
<thead>
<tr>
<th>Variant</th>
<th>tr/f(ns)</th>
<th>Jitter (Unit Interval - UI)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>S</td>
<td>R</td>
</tr>
<tr>
<td>100-SM-LL-L</td>
<td>0.37</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.08</td>
<td>Total</td>
</tr>
<tr>
<td>100-M5-SL-L</td>
<td>0.37</td>
<td>0.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100-TV-EL-S</td>
<td>0.4</td>
<td>0.7</td>
</tr>
<tr>
<td>100-MI-EL-S</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Previous system models

- Mostly non-existent
- Borrowed from computer systems
 - Worst case analysis
 - Can be too pessimistic in links
 - Gaussian distributions
 - Works well near mean
 - Often way off at tails
 - ISI distribution is bounded
- Borrowed from data communications
- Need accurate models
 - To relate the power/complexity to performance

Comparison w/ Gaussian Model

- Cumulative ISI distribution
- Impact on CDR phase

 - Gaussian model only good down to 10^{-3} probability
 - Way pessimistic for much lower probabilities
A new model

- Use direct noise and interference statistics
- Main system impairments
 - Interference
 - Voltage noise (thermal, supply, offsets, quantization)
 - Timing noise – always looked at separately
 - Key to integrate with voltage noise sources
 - Need to map from time to voltage

Residual ISI Error

- Cannot correct all the ISI
 - Equalizers are finite length
 - EQ coefficients quantized
 - Channel estimate error
- The error affects both voltage and timing
- Need to find the distribution of this error
Generating ISI Distributions

Convolution method

Tx Equalized pulse response

ISI distribution

Data sample distribution Edge sample distribution

Estimated Residual Error

5 Tap Transmitter Equalizer
Equalizer Related Error Sources

- Residual ISI is the biggest source of error
- Quantization error and equalizer estimation
 - Are significant for reasonable assumptions about accuracy

Random Voltage Noise

- Thermal noise
 - Resistor and Device noise
- Quantization
- Estimation error
- Supply noise
- Receiver offset
Effect of Timing Noise

- Need to map from time to voltage

Voltage noise when receiver clock is off

- The effect is going to depend on the size of the jitter, the input sequence, and the channel

Effect of Transmitter Jitter

Jittered pulse decomposition

- Decompose output into ideal and noise
- Noise are pulses at front and end of symbol
 - Width of pulse is equal to jitter

Transmitter Jitter Noise

Approximate the noise pulses with deltas
- Assuming jitter is much narrower than channel impulse response

Channel output
- Output with no jitter
- Response to the noise deltas

Jitter effect on voltage noise

Transmitter jitter
- High frequency (cycle-cycle) jitter is bad
 - Changes the energy (area) of the symbol
 - No correlation of noise sources that sum
- Low frequency jitter is less bad
 - Effectively shifts waveform
 - Correlated noise give partial cancellation

Receive jitter
- Modeled by shift of transmit sequence
- Same as low frequency transmitter jitter
Jitter Propagation Model

Channel bandwidth matters

If \(h(T/2) \) is small, the noise is small

\(h(nT+1/2) \) not small, many pulses add

\[
x_{ISI} (kT + \phi_i + \epsilon_k^{RX}) = \sum_{j=-\infty}^{\infty} b_{k-j} p(jT + \phi_j)
\]

\[
x_{jitter}(kT + \phi_i + \epsilon_k^{RX}) = \sum_{j=-\infty}^{\infty} b_{k-j} \left[h(jT + T/2 + \phi_j) (\epsilon_k^{RX} - \epsilon_{k-j}^{RX}) - h(jT-T/2 + \phi_j) (\epsilon_k^{RX} - \epsilon_{k-j}^{RX}) \right]
\]

- **Channel bandwidth matters**
 - If \(h(T/2) \) is small, the noise is small
 - \(h(nT+1/2) \) not small, many pulses add

Voltage Noise From Jitter

- **White jitter**
 - Noise from Tx much larger than from Rx jitter
 - From Rx jitter, noise is white
 - From Tx jitter, filtered by the channel

- **Y-axis is noise \(\sigma \) (in Volts)**
 - If the noise was white
 - \(\sigma = 10 \text{mV} \Rightarrow -40 \text{dBV} \)

- **Bandwidth of the jitter is critical**
 - It sets the magnitude of the noise created
Jitter Source From PLL Clocks

- Noise sources
 - Reference clock phase noise
 - VCO supply noise
 - Clock buffer supply noise

- Stationary phase-space model

Noise Transfer Functions

- Low-pass from reference (input clock)
- Band-pass from VCO supply
- High-pass from clock buffer supply

PLL supply noise

Total noise ~ 25mV peak-to-peak
3.7% of on-chip V_{ddA} (quiet PLL supply)

Where is this noise coming from?

Noise Spectrum (1)

Deterministic noise frequency components:
- 200MHz - ASIC core operating frequency.
 - Noise on link supplies due to ground bounce.
- 400MHz - reference clock, some link logic.
- 4GHz - link data rate.
 - Data & edge clocks at 2GHz => 4GHz noise.
 - Tail current modulation in diff. pairs.
Noise Spectrum (2)

- Random noise mostly white.
- Low frequency peaking in V_{dd} noise due to underdamped impedance of distribution network.
 - V_{clk} distribution network more damped because of higher resistance.

2x Oversampled Bang-Bang CDR

- Generate early/late from d_n, d_{n-1}, e_n
- Simple 1st order loop, cancels receiver setup time
- Now need jitter on data Clk, not PLL output
Data Clk Noise

- Model phase selector and PLL
 - Base linear PLL jitter
 - Add non-linear phase selector noise from CDR
- **Model the CDR loop as a state machine**
 - The current phase position is the state
 - State transitions are caused by early/late
 - Jitter on input data and PLL means
 - Possible to be late and get early PD result
 - Often filter early/late to generate up/down

Transition Probabilities

- **Example system:**
 - CDR loop
 - Residual ISI
 - At edge -30dBV
 - Desired phase
 - State = 133

- **On average move to correct position**
 - But probability of wrong movement is not small
 - Need to find probability of at each phase location
Bang-Bang CDR Statistical Model

- Need steady state probabilities of the states
 - Have the transition probabilities

- Iteratively apply transition probabilities (Markov chain)
 - Results will converge to a steady-state

Bang-Bang CDR Model

- Gives the probability distribution of phase
 - Which is the CDR jitter distribution
Noise and Interference Summary

- Many important sources of noise and interference
 - ISI, crosstalk, quantization, estimation, etc.
- Largest error comes from ISI
 - By factor of 10x
- Timing is noisy too
 - High frequency transmitter jitter is bad
 - CDR jitter needs to be considered
 - Especially if the data input is noisy
- What is the impact on performance?

Agenda

- Backplane channel review
- Link system models and noise
 - Previous standard approaches
 - Statistical modeling
- Performance analysis
ISI and CDR Phase Distributions

- In ideal world, there would be only two dots
 - This plot shows how these dots spread out
- Vertical slice – ISI distribution per time offset
- Horizontal weight – CDR phase distribution

Putting It All Together

- To compare different designs
 - Compare the voltage margin at given BER
- Need to include all noise sources
 - Accurate ISI distribution
 - Transmit and receive jitter
 - CDR jitter
 - EQ quantization noise
 - Receiver offset
BER Contours

5 tap Tx Eq

5 tap Tx Eq + 1 tap DFE

» Voltage margin

» Min. distance between the receiver threshold and contours with same BER
Model and measurements

- PAM4, 3 taps of transmit equalization, 5Gb/s, 26” FR4 channel

Example channels

- Legacy (FR4) - lots of reflections
- Microwave engineered (NELCO)

V. Stojanović, A. Amirkhani, M. Horowitz, “Optimal Linear Precoding with Theoretical and Practical Data Rates in High-Speed Serial-Link Backplane Communication,” IEEE International Conference on Communications, June 2004
Capacity achieving bit loading

- Capacity is very big
- Practical rates lower
 - low target BER < 10^{-15}
 - peak power constraint
- Thermal noise – the smallest noise source

Capacity with link-specific noise

- Effective noise from phase noise
 - Proportional to signal energy
 - Decreases expected gains
- Still, capacity is much higher than data rates in today’s links (3Gb/s)
Multi-tone with integer bit loading

- Peak-power constraint introduces large gap penalty to capacity (can go around with coding, but too expensive)
- Still pretty high data rates

Multi-level: Offset and jitter are crucial

- To make better use of available bandwidth, need better circuits
- PAM2/PAM4 robust candidate for next generation links
Full ISI compensation too costly

Today’s links cannot afford to compensate all ISI
 ▶ Limits today’s maximum achievable data rates

Conclusions

▶ Backplane links limited by the channel
▶ ISI is large in baseband links
 ▶ Can’t completely compensate
 ▶ (At least not with reasonable area/power)
 ▶ Residual ISI also increases CDR jitter
▶ Generally have low BER requirements
 ▶ Accurate noise statistic important
 ▶ Many of large noise source are bounded
▶ Power constrained transmitter
 ▶ PAM4 and PAM2 with simple DFE are attractive solutions
▶ Still, capacity of these links is very big
 ▶ Smart multi-tone?