EE290C - Spring 2004
Advanced Topics in Circuit Design
High-Speed Electrical Interfaces

Lecture #7
Components
 Termination, Transmitters & Receivers
Jared Zerbe
2/10/04

Outline

- General issues
- Termination
- Transmitters
- Receivers
General Issues

- Single-ended vs. Differential
- Voltage mode vs. current mode
- I/O clocking & use of phasors
- RiCi

Single-ended vs. Differential

- Single-ended signaling – compare to shared reference
 - Often used with a bus
- Issues
 - Generates SSO noise
 - How to make reference
 - How to quiet reference: difference in bypass network if shared
 - Crosstalk cannot be made common-mode
- Differential must run > 2x as fast as single-ended to make sense
 - Often debated if this always can be done
Voltage mode vs. current mode

- In a transmission-line environment does this terminology make sense?
 - A wave has voltage and current, right?
- Answer is in the driver Z
 - Low Z driver = voltage mode
 - High Z driver = current mode

Clock Frequency Limits

- Min clock period > 8-FO4 (i.e. 1-GHz @ 0.25u)
- Faster links should use multiple clocks:
 - Critical on mux/demux
I/O clocking & use of phasors

- Heavy multiplexing of input & output data streams allows for performance higher than process technology would seem to allow
 - Can get out of hand

RiCi & Pad Complexity

- You can’t just add arbitrary complexity at the pad
- Tx, Rx, ESD & Pad itself have RiCi which makes pole
- In multi-drop busses, multiple poles at same frequency can stack up!
Termination

- Why terminate?
- External vs. internal
- Series vs. Parallel
- AC vs. DC termination
- Untrimmed poly
- Active termination

Why terminate?

- Termination keeps energy from bouncing around
- In current-mode signaling voltage is developed across the terminator
- Quality of termination can limit system performance
External vs. Internal

- + Internal termination makes package L part of T-line
- + Eliminates package as ‘stub’
- - Increases complexity, poor tolerances for on-die R's

Series vs. Parallel Termination

- Series often used with voltage mode
 - Driver lower Z than Rt
- Parallel with current-mode
 - Driver higher Z than Rt
- Driver Z hard to control across PVT
 - Highest performance is usually through parallel termination
AC vs. DC Termination

- With differential signals can terminate to the compliment
 - Potential power savings
 - Can build a higher-Z system
 - What sets common-mode?
 - Usually TX
 - Demands large RX common-mode range
 - AC-coupled & AC-term
 - Now can set common mode with parallel large R’s

Termination With Untrimmed Poly

- Issue is variation in sheet resistance & C_D
- Typically +/- 15% in sheet-rho at one temperature
- Also typically varies with temperature
- BUT
 - At least it’s always a resistor (no non-linearities)
 - It’s simple
 - It’s ESD robust
Active Termination

- (a) Triode
- (b) Two-Element
- (c) Pass-Gate
- (d) Digital Trimming

IV-characteristic of two-element resistor

Termination Example: SSTL Source

Conventional CMOS Signaling:
- 1.5V
- 25Ω
- 0.1 ns, ZO=50 Ω
- 6.5pF
- P_{term} = 40 mW (two term/s)
- P_{dx} = 60 mW

SSTL-Style Signaling:
- 1.5V
- 25Ω
- 40Ω
- 40Ω
- V_{RFL} = V_T
- P_{term} = 5 mW (2 term/s)
- P_{dx} = 12.5 mW

Series resistor isolates stub from line, increases line impedance, reduces ringing, reduces power

Better receiver and (slightly) better reference.
SSTL Conventional w/o source

1" stubs w/ 1" spacing

resolvers

$t=0.81 \text{ ns}$

SSTL - with source damping resistors

Resistors act like rubber bands

$Rs=Zo/2$

receivers

$t=0.81 \text{ ns}$
RSL: Compensated short stubs

Memory reads split 50/50 and go in each direction
Then double at the master end to restore full-swing
Writes go straight through to terminator
Allows for multi-drop memory bus with high-Z drivers
Transmitters

- Single-ended
 - SSTL
 - RSL
 - GTL
- Differential
 - LVDS
 - CML
- Transmitter timing
- Other TX Design Issues

Tx Single-ended

- Classic inverter... why not?
 - Poor Z matching at Tx; very prone to reflections
 - Generates extreme amounts of SSO noise
 - Easily order(Vdd) if there is any L and large # of drivers
 - Have to generate term voltage at Rx; burns power
Single-Ended : SSTL

Class-I

\[I_o = +/ - 8\, \text{mA} \]

\[V_{\text{TT}} = \frac{1}{2} V_{\text{DDQ}} \] (center term)

Class-II

\[I_o = +/ - 16\, \text{mA} \]

\[V_{\text{TT}} = \frac{1}{2} V_{\text{DDQ}} \] (center term)

Single-Ended : SSTL characteristics

- Center-terminated, push-pull
- Very flexible termination
 - Allows double, single, or no termination
 - But source term slows edge rates & limits speed
- Very simple
 - Driver can be simple inverter
 - Receiver can be simple inverter

... but PVT varying output driver means reflections
Single-Ended : RSL

Open drain current-source driver
- Current-control to keep constant i over PVT
- Slew-rate control to keep rate low enough to avoid overshoot & ringing
- Low-swing with reference
- Relatively expensive and complicated

Very short stubs
- Aggressive Ci, Li
- Tuned out with loaded/unload sections
Single-Ended : GTL/GTL+

- $I_o = -40\text{mA}$
- $V_{TT} = 1.2V$
- $V_{REF} = 0.8V$
- $Z_0 = 50\Omega$

Single-Ended : GTL/GTL+ characteristics

- “Just like Rambus”
- But... output driver goes linear
 - No current-control
 - Resistance presents Z-discontinuity to line
- Lower Vterm doesn’t help transmitter Ron
 - Addressed somewhat in GTL+ which shifted term
Differential : LVDS

- $I_o = +/- 3.5\text{mA}$
- $V_{CM} = 1.25\text{V}$ (set by driver)
- $Z_o = 100\Omega$
- AC terminated @ receiver

Differential : LVDS characteristics

- **Differential**
 - Eliminates non-common mode reference noise
 - Also (ideally) keeps current at driver constant
 - Low power - only $+/- 3.5\text{mA}$

- **Termination at the RX on-chip or off**
 - No references, can ship across cable
 - Requires very wide CM range from RX
 - Unterminated at driver; reflections occur from discontinuities
 - Timing of driver push-pull ckt can be a challenge
Differential : CML - direct coupled

\[I_o = -21 mA \]

\[Z_o = 50 \Omega \]

Double-terminated on-chip

Differential : CML - AC coupled

\[I_o = -21 mA \]

Supports different on-chip Vterms
Differential: CML Characteristics

- **Open-drain**
 - High common-mode keeps saturation
- **DC or AC coupled**
 - AC-coupling requires 8b10b coding
- **Termination**
 - DC-term: Better control of CM than LVDS
 - Requires on-chip term network
 - Double-terminated
 - Minimize reflections off driver
 - Driver and receiver both see 25Ω
 - More power
 - 4x LVDS just from 100Ω -> 25Ω term

Physical signal swings

1. Swing @ receiver input, driver swing will be higher.
2. Differential signalling
Simple Transmitter Timing

- DDR: send a bit per clock edge
- Critical issues:
 - 50% duty cycle
 - Tbit > 4-FO4

Very Fast Transmitter Timing

- Off chip time constant smaller than on chip:
 - Generate current pulse at the output
 - Limited only by the output capacitance
 - Need to be very careful to match & tune; otherwise can make things worse

Limiting time constant 25-Ω*Cpad

Cpad = 8*Cdriver + Cesd
More TX Design Issues

- **Saturation Margin**
 - Drivers with current sources are limited in common-mode range
 - Must keep tail saturated; otherwise Z is thrown off

- **DC Distortion, ISI generation**
 - What drives the driver? How far back to get to CMOS levels?
 - It is easy to amplify errors by unknowingly biasing your circuit to a level or to an edge

- **Edge-rate Control**
 - At FF corner your TX can generate edge-rates too fast
 - Higher xtalk (especially NEXT)
 - More reflections (smaller Z discontinuities)

Receivers

- **Basic receive architectures**
- **StrongARM latch & improved latch**
- **Single-ended : reference noise**
- **Integrating receivers**
- **RX Design Issues**
Two Basic Receive Architectures

- Amplify then sample or...
- Sample, then amplify

Rx Example: StrongARM Latch

- Simple single clock design
- Grey device show cross-coupled inverters that regenerate.
- Need a follow-on latch at the output to hold the data for the full clock cycle.
Rx Example: StrongARM Latch

- Has sampling noise and charge kickback from switching.
- Input offset not great: 50-100mV
- Bit-time is limited by the cycle-time (to have enough gain)
- Common-mode gain effects through the tail device in linear region

Improved Sampling Receiver

- Improvements in common-mode sensitivity, kickback, offsets through correction port (loffP,loffM)
Receiver Evaluation: Step Response

- Can calculate pulse response of Rx front-end
- Indicates aperture & gain-bandwidth characteristics of the receiver
- Can be convolved with the channel response

Integrating Rx & Reference Noise

- Integrator used to mute the effect of high-frequency noise
 - Most interesting in single-ended systems
 - High frequency noise is often L*dl/dt switching noise on reference
 - Due to differences in loading between reference & signal
Integrating Receiver Design

Integrating Receiver Windowing

Integration time is windowed to match valid data & minimize anti-data
RX Design Issues

- **Offset**
 - Typically front-ends have 10-30mV of uncorrected offset
 - Heavy MonteCarlo sims and active methods must be used to reduce offsets to ~5mV in multi-receiver designs

- **Aperture**
 - Need Gain*BW
 - BW in slicer domain translates to pulse response width or aperture

- **ISI**
 - Must properly reset the receiver before the next evaluate phase
 - Often there is some residual ISI or negative ISI you must eat

- **Common-mode gain**
 - Most structures have different gain characteristics (and thus sensitivity) across the range of common-modes. Often end up restricting range or adding preamp

ISSCC 2004 Next Week

- Interesting sessions in high-speed I/O highlighted
- Be prepared to talk on at least 2 papers from these sessions