.model nmos
+ nmos level=1 tox=2.6n vt0=0.3 gamma=0.2 phi=0.6 u0=250 ld=0.025u
+ capop=0 acm=3 ldif=0 hdif=0.2u cj=8e-4 cjsw=8e-12 cjwt=8e-11
+ lambda=0.2

.model pmos
+ pmos level=1 tox=2.6n vt0=-0.3 gamma=0.2 phi=0.6 u0=100 ld=0.025u
+ capop=0 acm=3 ldif=0 hdif=0.2u cj=8e-4 cjsw=8e-12 cjwt=8e-11
+ lambda=0.15

When using the above models, remember to use \(W/L_{\text{eff}} \) in your calculations, where \(L_{\text{eff}} = L - 2LD \) and \(LD = 0.025 \mu\text{m} \). You can calculate \(k' \) directly from the SPICE model parameters \(u0 \) and \(tox \).

1) For each of four the circuits, shown in figure 1, do the following steps. Assume \(V_{\text{DD}} = 1.2 \text{ V} \), \(W = 4 \mu\text{m} \), \(L = 0.13 \mu\text{m} \), \(R_S = 1 \text{ K}\Omega \). Use the models given above.

 a) Choose \(R_{\text{REF}} \) so that the output current \(I_{\text{out}} \) is 200 \(\mu\text{A} \).
 b) Calculate the output resistance \(R_{\text{out}} \) assuming that all the transistors are in saturation.
 c) Calculate the range of voltages at the output node over which the transistors remain in saturation.
 d) Compare the results from part (a)-(c) with SPICE.

 To compare part (a) and part (b) with SPICE, put a voltage source \(v_{\text{out}} \) at the output of the circuit with a dc voltage high enough to ensure that all transistors are in saturation; next, do a \('.op' \) and a \('.tf i(m1) v_{\text{out}}' \) analysis, where \(m1 \) is the name of the output transistor.

 To compare part (c) with SPICE, sweep the output voltage from 0 to \(V_{\text{DD}} \) and plot \(1/(d(I_{\text{out}})/d(V_{\text{out}})) \). Label all the breakpoints.

 It is not sufficient to print or plot something like \(g_{\text{m2f1}}r_{\text{f1}} \), since this will only verify that you used the correct small signal parameters, not that you used the correct formula for \(R_{\text{out}} \).
Figure 1.
2) For the circuit shown in figure 2, assume $V_{DD} = 1.2$ V, $W = 4 \, \mu$m, $L = 0.13 \, \mu$m, $R_D = 1 \, \text{K}\Omega$, $I_B = 400 \, \mu$A.

a) Calculate $R_{out, dm}$, $R_{out, cm}$, A_{dm} and A_{cm} for $V_{id} = 0$ and $V_{ic} = 0.9$ V, assuming that all the transistors are in saturation.

b) Calculate the range of common mode input voltages V_{ic} for which all the transistors remain in saturation. Assume $V_{id} = 0$ V. For this step, do not assume that the input voltages are limited to $[0, V_{DD}]$.

c) Calculate the range of differential mode input voltages V_{id} for which both input transistors remain in saturation. Assume $V_{ic} = 0.9$ V.

d) Verify part (a) and (c) using SPICE.

To verify part (a), use a .tf analysis.

To verify part (b), plot V_{oc} versus V_{ic} from 0 V to 1.5 V for $V_{id} = 0$ V.

To verify part (c), plot V_{od} versus V_{id} from -1.2V to +1.2V for $V_{ic} = 0.9$ V. Label all the breakpoints.

![Figure 2.](image)

SPICE hint: to apply and sweep a differential voltage, you will need an ‘e’-element: a voltage-controlled voltage source (vcvs). Syntax: ‘e1 out1 out2 in1 in2 gain’. This will add a vcvs between nodes out1 and out2, with voltage equal to gain*v(in1,in2).