Calculating currents:

\[V_{\text{out}} + V_{\text{out}} = V_{\text{in}} + V_{\text{in}} \quad \nu_i = 0 \]
\[V_{\text{out}} + V_{\text{in}} + V_{\text{in}} = V_{\text{in}} + V_{\text{in}} + V_{\text{in}} + V_{\text{in}} \]

Let All

\[\left(\frac{W}{L} \right)_i = \left(\frac{W}{L} \right)_i = \left(\frac{W}{L} \right)_i \]
\[\left(\frac{2 \cdot I_s}{W} \right)_i \cdot k_i + \left(\frac{2 \cdot I_s}{W} \right)_i \cdot k_i = \left(\frac{2 \cdot I_s}{W} \right)_i \cdot k_i + \left(\frac{2 \cdot I_s}{W} \right)_i \cdot k_i \]

\[I_i = I_s \]

Transistor \(M_2 \) has \(M_7 \) as its source resistance.

If \(g_m' \)'s are all equal = \(g_m \)

\[\frac{g_m'}{2} \cdot \Delta V_i = \frac{g_m'}{2} \cdot \Delta V_i \]
Class AB Input Stage Cross Coupled Differential Pair (Cont.)

As Δv_i increase i_{out} continues to increase.

If Δv_i decreases M2 & M7 cutoff.

But then current comes from M3 & M6.

So for Small Signals

$$GM = \frac{i_{ds}}{\nu_{in}} + \frac{i_{ds}}{\nu_{in}} = g_m$$

$$R_{out} = g_m \cdot r'_d || g_m \cdot r'_d = \frac{g_m \cdot r'_d}{2}$$

$$A_v = \frac{g_m \cdot r'_d}{2}$$

Class AB Input Stage Cross Coupled Differential Pair (Cont.)

For Large Signals either M2, M9 or M3, M6 cutoff so the g_m drops, but since the current is increasing it increases again.

Slew Rates can be very high since they are independent of the Bias Current ⇒ Bigger Signal gives more current to drive the next stage.

Another Class AB
Another Class AB (Cont.)

Small Signals M5 & M6 are degenerated by R_i & R_s.

But for Large Signals the INPUT appears across R_i + R_s.

\[I_{\text{out}} = \frac{V_{\text{in}}' - V_\text{in}}{R_i + R_s} \]

Feedback Zero Compensation

Shunt - Series Feedback

Feedback Zero Compensation (Cont.)

\[|T(\omega)| \]

\[\theta = 0 \quad \omega = \omega_{\text{off}} \]

\[-90^\circ \]

\[-180^\circ \]

\[20^\circ = \theta_m \]

\[\theta(\omega) \]

But we want 45° of θ_m so we add C_f.

\[f = \frac{R_i}{R_i + R_s} \left(\frac{1 + R_s \cdot j \cdot \omega \cdot C_f}{1 + (R_i \parallel R_s) \cdot j \cdot \omega \cdot C_f} \right) \]

If $R_s \ll R_i$

\[f = \frac{R_i \cdot j \cdot \omega \cdot R_s \cdot C_f}{R_s \cdot j \cdot \omega \cdot R_i \cdot C_f} \]

\[\omega_z = \frac{1}{R_s \cdot C_f} \quad \omega_r = \frac{1}{R_i \cdot C_f} \]

Since $R_s \ll R_i \quad \omega_z \ll \omega_r$

\[T = a(\omega) \cdot f(\omega) \]
Feedback Zero Compensation (Cont.)

We can add positive phase shift from the zero at ω_{unity} and as long as the contribution is $< 45^\circ$. There is no change in the magnitude of $f(\omega)$ and thus $T(\omega)$

$$\tan(\omega_{\text{unity}}(R_f \cdot C_f)) = 25^\circ$$

or,

$$C_f = \frac{1}{R_f \omega_{\text{unity}} \cdot \arctan(25^\circ)}$$