1. Sketch V_{out} versus V_{in} as V_{in} varies from 0 to V_{DD}. Indicate and calculate all the breakpoints (the values of V_{in} and V_{out}) and corresponding operation regions (cutoff, linear or saturation) of transistors M_1 and M_2.
Assume V_{t0} (NMOS) = 0.5V, V_{t0} (PMOS) = -0.6V, $k'W/L$ (NMOS) = 8mA/ V^2, $k'W/L$ (PMOS) = 3mA/ V^2. V_{DD} = 3V, R_1=R_2=10KΩ.

![Circuit Diagram]
2. For each of the two circuits below, perform the calculations (a) and (b) by hand. Assume $V_{t0} = 0.5V$, $k'W/L$ (NMOS) = 8mA/V2, $\lambda = 0.1V^{-1}$, $\gamma = 0.2V^{1/2}$. $R_s = 200\Omega$, $R_{L1} = 10K\Omega$, $R_{L2} = 10k\Omega$, $V_{bias} = 1.2V$ and $V_{DD} = 3V$.

a) Determine the dc voltage V_{in}, so that the output V_{out} is at 1.5V. Assume that V_{in} is between 0 and V_{DD}.

b) Calculate the operating point parameters I_{DS}, V_T and V_{DSAT} and the small signal parameters g_m, g_{mbs} and r_o.

Circuit Diagrams:

![Circuit Diagram 1](image1)

![Circuit Diagram 2](image2)