.model nmos
+ nmos level=1 tox=2.6n vt0=0.3 gamma=0.2 phi=0.6 u0=250 ld=0.025u
+ capop=0 acm=3 ldif=0 hdif=0.2u cj=8e-4 cjsw=8e-12 cjgate=8e-11
+ lambda=0.2
.model pmos
+ pmos level=1 tox=2.6n vt0=-0.3 gamma=0.2 phi=0.6 u0=100 ld=0.025u
+ capop=0 acm=3 ldif=0 hdif=0.2u cj=8e-4 cjsw=8e-12 cjgate=8e-11
+ lambda=0.15

When using the above models, remember to use W/Leff in your calculations, where $\text{Leff} = \text{L} - 2*\text{Ld}$ and $\text{Ld} = 0.025\text{um}$. You can calculate k' directly from the SPICE model parameters $u0$ and tox.

1. A circuit as shown in Fig.1 has $Vcc=15\text{V}$, $R = 5\Omega$, $V_{\text{CE(sat)}} = 0.2\text{V}$, and $V_{\text{BE}} = 0.7\text{V}$.
 (a) Sketch load lines in the I_{c1}- V_{CE1} plane for $R_L = 2\Omega$ and $R_L = 10\Omega$.
 (b) Calculate the maximum average sinusoidal output power that can be delivered to R_L (both values) before clipping occurs in (a) above. Sketch corresponding waveforms for I_{c1}, V_{ce1}, and P_{c1}.
 (c) Calculate the circuit efficiency for each value of R_L in (b). (Neglect power dissipated in Q3 and R)
 (d) Select R_L for maximum efficiency in this circuit and calculate the corresponding average output power with sinusoidal signals.
2. Design a CMOS output stage based on the circuit of Fig.2 to deliver ±0.6V before clipping at \(V_o \) with \(R_L = 1\, \text{K}\Omega \) and \(\text{VDD} = 1.2\, \text{V} \). Use \(I_B = 10\, \mu\text{A} \) and 100\, \mu\text{A} idling current in \(M_{1a} \) and \(M_{1b} \). Set \((W/L)_{4a} = (W/L)_{4b} = 0.5\, \mu\text{m}/0.13\, \mu\text{m}, \) \((W/L)_3 = 0.2\, \mu\text{m}/0.13\, \mu\text{m}. \) Total chip area is to be minimized. Specify \(W/L \) for \(M_{1a}, \, M_{1b}, \, M_{2a}, \, M_{2b}. \) Use SPICE to verify your design by plotting the \(V_o \) vs \(V_i \) characteristic. Minimum \(L \) is 0.13\, \mu\text{m}.
Fig. 2