Transient Response and VTC

For the circuit in Fig. 3 calculate and draw waveforms at nodes 1, 2, and V_{out}. Voltage pulse is applied to the input V_{in} with duration of the pulse $T_1 = 2$ns. CMOS inverters are assumed ideal, with infinite gain around switching point $V_T = V_{dd}/2$. Resistances of MOS transistors and diode are very small (assume zero). Turn-on voltage of the diode is 0V. Known parameters: $R = 10k\Omega$, $C_1 = C_2 = 50fF$, $V_{dd} = 5V$.

Solution:

For $V_{in} = 0$, right before the rising edge of the pulse, we have following state:

$V_1(0^-) = V_2(0^-) = V_{dd} = 5V$
$V_3(0^-) = 0$
$V_{C1}(0^-) = V_2(0^-) = 5V$
$V_{C2}(0^-) = V_2(0^-) - V_3(0^-) = 5V$

At the rising edge of the pulse, V_1 drops to 0V and diode turns off. Capacitors C_1 and C_2 are discharging through resistance R and output of the first inverter, with discharge time constant of $\tau_1 = R(C_1+C_2) = 1$ns (see Fig. A).

At the rising edge of the pulse, V_1 drops to 0V and diode turns off. Capacitors C_1 and C_2 are discharging through resistance R and output of the first inverter, with discharge time constant of $\tau_1 = R(C_1+C_2) = 1$ns (see Fig. A).

Voltage at the output will not change until V_2 reaches switching threshold $V_T = V_{dd}/2$. That will occur at the time $t_1 = \tau_1 \ln(2) = 0.69$ns after the rising edge of V_{in}. Therefore, $V_2(t_1) = V_{dd}/2$. As soon as V_2 has reached $V_{dd}/2$, V_{out} starts rising, but V_2 stays at $V_{dd}/2$ due to infinite gain of the inverter. In this regime, fixed current $I_2 = V_{dd}/(2R)$ discharges C_2 and V_{out} is a linear ramp. (see Fig. B)
When V_{out} reaches V_{dd} at $t_1 + t_2 = 1.69\text{ns}$, C_1 starts to discharge as well with time constant τ_1. At time T_1, voltage at node 2 has value:

$$V_2\left(T_1^-\right) = \frac{V_{\text{dd}}}{2}e^{-\frac{T_1^- - (t_1 + t_2)}{\tau_1}} = 1.835\text{V}.$$

When V_{in} undergoes a falling transition, V_1 will rise to V_{dd}, diode will turn-on, V_2 will rise to V_{dd}, and V_{out} returns to 0. All these transitions will happen instantaneously since diode conducts with zero resistance. Complete waveforms are shown in Fig. 3s.

![Waveforms](image-url)

Figure 3s.
Problem 2 OSC

\[V_B = 3.3 \text{V} \rightarrow .65 \]

\[t_1 = \frac{C \Delta V}{I_{aug}} = \frac{1p (1.65)}{1.83 \mu} \]

\[t_2 = \frac{C \Delta V}{5.5 \mu A} \]

\[x, y, z, A, B \]

\[t_{osc} = ? \]

\[R_{on} = 0 \]

\[C_{par} = 0 \]

\[t_{pu} = 0 \]

\[V_H = 1.65 \text{V} \]

\[y(10^-) = 0 \]

\[z(0^-) = 3.3 \text{V} \]
Problem 3 Monostable Multivibrator

\[V_t(M_4, M_5, M) = 0.5V \]
\[V_t(M_1, M_2, M_3) = 0.4V \]
\[k = 100 \text{ mA} / \text{V}^2 \]
\[\gamma = 0 \]

\[V(0) = 0 \]

\[I = c \frac{dV}{dt} \]

\[I_{avg} = I_{dsat} (M_5) \frac{k}{2} \frac{w}{l} \]

\[\Delta V = I_{avg} \text{ pulse width} \]

\[\text{V}_{\text{out}} \]