EECS 141: FALL 05—MIDTERM 1

NAME SOLUTION

<table>
<thead>
<tr>
<th>Last</th>
<th>First</th>
</tr>
</thead>
</table>

SID

Problem 1 (15): 15
Problem 2 (13): 13
Problem 3 (12): 12

Total (40) 40
PROBLEM 1: VTC, Delay (15 pts)

Consider the digital circuit shown in Fig. 1a. Assume short-channel transistor and you may also assume that all capacitances are constant and linear over the operation range. External load capacitance \(C_L = 1\, \text{fF} \), \(V_{DD} = 2.5\, \text{V} \), \(R = 40k\, \Omega \). Parameters of NMOS transistor are given below:

\[
k' = 100 \, \mu\text{A}/\text{V}^2, \quad V_{T0} = 0.5\, \text{V}, \quad V_{DSAT} = 0.5\, \text{V}, \quad \gamma = 0, \quad \lambda = 0, \quad W/L = 0.5\, \mu\text{m} / 0.25\, \mu\text{m}
\]

\[
W \cdot L \cdot C_{ox} = 0.6\, \text{fF}, \quad C_{DB} = C_{SB} = 0.1\, \text{fF}, \quad C_{GD,\text{overlap}} = C_{GS,\text{overlap}} = 0.1\, \text{fF}
\]

\[\text{Fig. 1a}\]

\[
\text{Diode I-V characteristics}
\]

a. Sketch the VTC for this circuit using the diagram below. Clearly indicate break points and operation modes of transistor \(M \) and diode \(D \). What is \(V_{\text{out}} \) when \(V_{\text{in}} = V_{\text{DD}} \)? (5 pts)

\[
V_{\text{in}} (\text{V})
\]

\[
V_{\text{out}} (\text{V})
\]

\[
0 < V_{\text{in}} < 0.5\, \text{V} \Rightarrow \text{Diode off} \Rightarrow I_D = 0, \, (M \text{ off/lin}) \Rightarrow V_{\text{out}} = V_{\text{in}}
\]

(1pt) \(V_{\text{in}} = 2.5\, \text{V} \) (large bias voltage) \(\Rightarrow \) assume \(\text{vel sat} \)

\[
V_{\text{out}} = V_D + R \cdot k' \frac{W}{L} \left[(V_{DD} - V_{T0} - V_{\text{out}}) \cdot V_{DSAT} - \frac{V_{DSAT}^2}{2} \right] = 1.5\, \text{V}
\]

(0.5pts) **Verify assumption:** \(V_{DS} = V_{\text{in}} - V_{\text{out}} = 1\, \text{V} > V_{DSAT} \)

Also: \(V_{GT} = 0.5\, \text{V} = V_{DSAT} \Rightarrow \) edge of \(\text{sat} / \text{vel sat} \) \(\Rightarrow \) good assumption!

(1.5pts) \(\text{(Vel) sat} & \lambda = 0 \Rightarrow \) constant current until \(V_{DS} = V_{DSAT} \) \((V_{\text{in}} = 1.5\, \text{V} + V_{DSAT} = 2\, \text{V}) \)

Current: \(I_M = I_D = (V_{\text{out}} - V_D) / R = 25\, \mu\text{A}, \quad V_{\text{out}} = \text{const} = 1.5\, \text{V} \)

(1pt) \(V_{DS} = V_{\text{in}} - V_{\text{out}}, \quad V_{GT} = V_{DD} - V_{\text{out}} - V_{T0} \Rightarrow \text{linear} \) when \(V_{\text{in}} < V_{DD} - V_{T0} \)

Equivalent \(R_M (V_{\text{in}} = 2\, \text{V}, \quad V_{\text{out}} = 1.5\, \text{V}): \quad R_M = V_{DS} / I_M = 0.5\, \text{V} / 25\, \mu\text{A} = 20k\, \Omega \)

Linear mode: \(V_{\text{out}} = V_D + R / (R + R_M) \cdot V_{\text{in}} \Rightarrow V_{\text{out}} = 0.5\, \text{V} + 2/3 \cdot V_{\text{in}} \)
b. Calculate the delay of the circuit in Fig. 1a when the input changes from 0 to V_{DD}. Let $V_M = 1\text{V}$ and assume that V_{in} was at 0 for a long time before the transition. If you are not sure of your answer in (a), assume that the output reaches final value $V_{high} = 1.75\text{V}$. What are the equivalent capacitance, equivalent resistance, and the delay? (5 pts)

Solution:

\[C_{eq} = 1.6\text{fF} \]
\[R_{eq} = 13.8\text{k}\Omega \]
\[t_p = 18.7\text{ps (or 24.3ps)} \]

(1pt) Calculation of C_{eq}:

\[V_{in} = 0 \]
\[V_{DD} \]
\[C_{GS} \]
\[C_{SB} \]
\[C_L \]

Transistor capacitances are shown in the figure. M is vel sat at the beginning of transition:
\[C_{eq,M} = C_{SB} + C_{GS,overlap} + \frac{2}{3} \cdot WL \cdot C_{OX} = 0.6\text{fF} \]

Equivalent capacitance is therefore:
\[C_{eq} = C_{eq,M} + C_L = 1.6\text{fF} \]

(3pts) Calculation of R_{eq}:

Equivalent circuits at the beginning and mid-point are shown below. In both cases, $V_{min} = V_{DSAT}$, so M is in velocity saturation.

\[V_{DD} \] \[V_{out} = 0 \]
\[R_0 \]
\[C_{eq} \]

\[V_{DD} \] \[V_{out} = V_M \]
\[R_M \]
\[V_D \]
\[R \]
\[C_{eq} \]

Observe: For $V_{GS} = V_{DS} = V$ \[R_{NMOS} = \frac{V}{k' \frac{W}{L} \left[V - V_{T0} \right] \cdot V_{DSAT} - \frac{V^2_{DSAT}}{2}} \]

R_0 calc: \[V_{DS} = V_{DD} \] \[R_0 = 14.3\text{k}\Omega \] (1pt)

R_M calc: \[V_{DS} = V_{DD} - V_M \] \[R_M = 20\text{k}\Omega \] (1pt)
\[R_{eq}(V_{out} = V_M) = R || R_M = 13.3\text{k}\Omega \] (0.5pts)

Therefore: \[R_{eq} = \frac{R_{eq}(V_{out} = 0) + R_{eq}(V_{out} = V_M)}{2} = 13.8\text{k}\Omega \] (0.5pts)

(1pt) Calculation of delay:

Notice that V_{M} is not at 50\% of full swing, so we go back to basic principles.
Starting from $V_{out}(t) = V_{high} \cdot \left(1 - e^{-t/\tau}\right)$, we derive propagation delay as follows:

\[t_p = \tau \cdot \ln \frac{V_{high}}{V_{high} - V_M} \quad \Rightarrow \quad t_p = 0.85 \cdot R_{eq} C_{eq} = 18.7\text{ps} \]

Using $V_{high} = 1.5\text{V}$ from part (a) yields $t_p = 1.1 \cdot R_{eq} C_{eq} = 24.3\text{ps}$
c. What is the energy dissipated as heat during high-to-low transition at the output? Assume input voltage step from V_{DD} to 0 and initial $V_{out} = 1.75V$. (1 pt)

Solution:

Energy stored on the output capacitor is dissipated as heat during the discharge operation. Therefore, $E_{diss} = 0.5 \cdot C_{eq} V_{out}^2 = 2.45fJ$ (1pt)

\[
E_{diss} = 2.45fJ
\]

d. For the circuit in Fig. 1b, determine the final value of V_A, V_B, V_C, assuming initial condition at each of the nodes is 3V and $V_{TP} = -0.5V$ (ignore body effect). (2 pts)

\[
V_A = 1.5V \quad V_B = 2V \quad V_C = 2V
\]

Solution:

No current flows into the gate $\Rightarrow I_{DA} = 0 \Rightarrow V_A = V_{GA} - V_{TA} = 1.5V$ (0.5pts)

Since $V_A < \text{initial } V_B$, M_B is also off $\Rightarrow V_B = V_A - V_{TB} = 2V$ (0.5pts)

Finally, M_C passes logic “1” to the output $\Rightarrow V_C = 2V$ (1pt)

e. Assuming that switch closes at time $t = 0$, what is the output voltage at $t = 0^+$ and $t = \infty$ for the circuit in Fig. 1c? C_L was initially discharged, $V_{TP} = -0.5V$. Briefly explain your answer (one line for each point). (2 pts)

\[
V_{out} (t = 0^+) = -1V \quad V_{out} (t = \infty) = -1.5V
\]

Solution:

$t = 0^+$: Voltage across C_L cannot change instantaneously $\Rightarrow V_{out}$ stays at $-1V$ (1pt)

$t = \infty$: No DC current through C_L $\Rightarrow M$ is off $\Rightarrow V_{out} = V_G - V_{TP} = -1.5V$ (1pt)
PROBLEM 2: Sizing (13 pts)
Assume the inverters are implemented in standard CMOS with symmetrical VTC. Furthermore, assume $C_{\text{intrinsic}} = C_{\text{gate}}$ ($\gamma = 1$). Equivalent resistance and input capacitance of unit-sized inverter are R and C, respectively. Sizing factor $S \geq 1$.

a. For inverters in Fig. 2a, pick the best sizing factors S_2 and S_3 to minimize propagation delay. What is the minimum delay (in terms of t_p)? (3 pts)

![Fig. 2a](image)

Solution:
Standard buffer problem, size increases geometrically.
Optimal fanout is: $f_{opt} = \sqrt[3]{27} = 3$ (1pt)

Using well-known geometric mean result, we get:
$S_2 = 3, \quad S_3 = 9$ (1pt)

All stages have equal delay, so propagation delay is given by:
$t_p = 3t_{p,\text{stage}} = 3t_p(1 + f_{opt}) = 12t_p$ (1pt)

b. What is the total energy drawn from supply when the input switches from 0 to V_{DD}? What is the total energy dissipated as heat by the circuit? (Answer in symbolic terms: C, V_{DD}) (2 pts)

Solution:
The total switched capacitance during 0→1 at the input is:
$C_{sw} = C_{\text{intrinsic, stage-2}} + C_{\text{gate, stage-3}} = \gamma C + f^2 C = 12C$
The total energy taken out of supply (second stage) is: $E_{\text{supply}} = 12CV_{DD}^2$ (1pt)

Energy stored on C_{sw} is $E_{C,0\rightarrow1} = 0.5C_{sw}V_{DD}^2 = 6CV_{DD}^2$.
Energy dissipated as heat is obtained by taking the difference + energy discharged from caps of the first ($2CV_{DD}^2$) and third stage ($18CV_{DD}^2$).
Therefore, $E_{\text{diss}} = 26CV_{DD}^2$ (1pt)
c. For inverters in Fig. 2a (previous page), pick the best sizing S_2 and S_3 to minimize energy consumption. You may assume square wave at the input with period T. What is the total energy consumed for a full cycle ($0\rightarrow1, 1\rightarrow0$)? \hfill (3 pts)

Solution:

\[
\text{Energy} = \min \text{ when total } C = \min. \quad (1pt)
\]

\[
S_{\text{min}} = 1 \Rightarrow S_2 = S_3 = 1. \quad (1pt)
\]

The total capacitance charged during a full cycle ($0\rightarrow1, 1\rightarrow0$) is:

\[
C_{\text{cycle}} = (C_{\text{int,stage-1}} + C_{\text{gate,stage-2}}) + (C_{\text{int,stage-2}} + C_{\text{gate,stage-3}}) + (C_{\text{int,stage-3}} + C_L) = 32C
\]

The total energy consumed for a full cycle is: \(E_{\text{cycle}} = 32CV_{DD}^2\) \quad (1pt)

\[
S_2 = 1
\]
\[
S_3 = 1
\]

\[
E_{\text{cycle}} = 32CV_{DD}^2
\]

d. What is the delay (in terms of t_{p0}) of the circuit in Fig. 2b? \hfill (2 pts)

Solution:

Parallel inverters can be replaced with equivalent inverter of size $S = 10$. \hfill (1pt)

The delay is simply calculated as:

\[
t_p = t_{p0}(1+10) + t_{p0}(1+64/10)
\]

\[
t_p = 18.4t_{p0}
\]
e. Assume you can choose the sizing S_2 and S_4 for inverters in Fig. 2c. What are the optimal values for minimum delay? What is the delay (expressed in terms of t_{p0})? (3 pts)

![Diagram of an inverter circuit with sizing factors S_1, S_2, S_3, and S_4.]

Solution:

To find the optimal sizing factors for minimum delay, we start from the delay expression. The delay of the circuit in Fig. 2b, normalized to t_{p0} is:

$$d = (1+S_2) + (1+8/S_2) + (1+S_4/4) + (1+16/S_4)$$

Taking partial derivative with respect to S_2 and S_4, we get:

$$\frac{8}{S_2^2} = 0 \Rightarrow S_2 = 2\sqrt{2}$$

$$\frac{16}{4S_4^2} = 0 \Rightarrow S_4 = 8$$

Finally, we compute the delay. Observe that the delay of the first two stages is equal (opt fanout $= f_{12} = 2\sqrt{2}$) and the delay of the last two stages is equal (opt fanout $= f_{34} = 2$).

$$t_p = 2 \cdot (1 + f_{12}) \cdot t_{p0} + 2 \cdot \left(1 + \frac{16}{f_{34}}\right) \cdot t_{p0} = 4 \cdot (2 + \sqrt{2}) \cdot t_{p0}$$
PROBLEM 3: General Knowledge (12 pts)

a. Determine the region of operation (Off, Linear, Saturation, Velocity saturation) in the following configurations. You may assume that all transistors are short-channel devices and have identical sizes, $V_{DD} = 2.5V$. Assume following transistor parameters:

NMOS: $V_{TN} = 0.4V$, $k_n = 115\mu A/V^2$, $V_{DSATn} = 0.6V$, $\lambda = 0$, $\gamma = 0.4V^{1/2}$, $2\Phi_F = -0.6V$

PMOS: $V_{TP} = -0.4V$, $k_p = -30\mu A/V^2$, $V_{DSATp} = -1V$, $\lambda = 0$, $\gamma = -0.4V^{1/2}$, $2\Phi_F = 0.6V$

Explain your reasoning and show your derivations if needed. (5 pts)

Solution:

![Diagram of transistor configurations]

1. **M_1**
 - $V_GS_1 = V_{DS1} = -2.5V$
 - $|V_{DSAT1}| < |V_{GT1}| < |V_{DS1}| \Rightarrow M_1$ velocity saturation (1pt)

2. **M_3**
 - $V_{GS3} = 0 < V_{T3} \Rightarrow M_3$ off (1pt)

3. **M_2**
 - $V_{x} = V_{DD} - V_{T2} \Rightarrow M_2$ off (1pt)

4. **M_4**
 - $V_{T4} > V_{T5}$ (body effect) \Rightarrow $V_{DS5} < V_{GT5} \Rightarrow M_5$ linear (1pt)
 - Assume M_4 vel sat and ignore body effect in the first iteration:

 $V_{x} = \left(V_{DD} - V_{T4} \right) \cdot \frac{V_x^2}{2} = \left(V_{DD} - V_{x} - V_{T5} \right) \cdot V_{DSAT} - \frac{V_{DSAT}^2}{2}$

 $V_{x} = 0.435V \Rightarrow M_4$ velocity saturation (1pt)

Note: Body effect will only lower V_x and increase V_{DS4}, V_{GT4} (0.435V is the worst-case).
b. The first row of the table given below lists the characteristics of a successful microprocessor designed for desktop systems. A low power version for portable use is desired and several changes are therefore made to the design. Use simple hand calculations to fill in estimates for blank cells in the table. Use the space below to explain your answers (if needed). All transistors exhibit short-channel I-V characteristics. (5 pts)

<table>
<thead>
<tr>
<th></th>
<th>V_DD / V_T (V)</th>
<th>W, L, t_ox (relative)</th>
<th>C (nF)</th>
<th>I_SAT (mA)</th>
<th>Clock (GHz)</th>
<th>Area (mm^2)</th>
<th>Power (W)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Original</td>
<td>2.5 / 0.4</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2.4</td>
<td>100</td>
<td>8</td>
</tr>
<tr>
<td>Voltage Scaling</td>
<td>1.25 / 0.2</td>
<td>1</td>
<td>1</td>
<td>0.5</td>
<td>2.4</td>
<td>100</td>
<td>2</td>
</tr>
<tr>
<td>General Scaling</td>
<td>1.25 / 0.2</td>
<td>0.6</td>
<td>0.6</td>
<td>0.5</td>
<td>4</td>
<td>36</td>
<td>2</td>
</tr>
</tbody>
</table>

Solution:

Assuming that voltage scaling factor is U and that transistor dimensions scale with factor S, recall following simple formulas from the general scaling theory:

\[
C \sim WL/t_ox \sim 1/S
\]

\[
I_SAT = \nu_sat \cdot C_ox \cdot W \cdot (V_GT - V_DSAT) \sim U
\]

\[
f_Clk \sim 1/C \sim 1/S
\]

Area \sim WL \sim S^2

Power \sim f_Clk \cdot C \cdot V_DD^2 \sim U^2

Each entry in the table is worth 0.5pts (total 4.5pts) + 0.5pts for formulas/calculations.

c. For each of the following statements, indicate whether it is true or false (circle one answer). (2 pts, 0.5 for correct answer, −0.25 for wrong one)

T F (a) The load capacitance of a static CMOS gate has no effect on its VTC.
T F (b) The delay of a static CMOS inverter is minimized if (W/L)_p / (W/L)_n = \mu_n / \mu_p.
T F (c) Silicided poly lines improve performance by decreasing the capacitance.
T F (d) PMOS enters vel. saturation for smaller absolute value of electric field than NMOS.