EE141 - Fall 2005
Lecture 26

Memory (Cont.)
Perspectives

Administrative Stuff

- Homework 10 posted – just for practice
 - No need to turn in
- Office hours next week, schedule TBD.
- HKN review today. Your feedback is important!
- Final covers all material covered in class.
 Precise overview to be posted on web-site.
- Review session schedule TBD.
Project 2 – Summary

- Variety of topologies and circuit styles
 - Most projects focused on mix of static logic families

- Some very impressive presentations
 - Refer to examples on web-site

- Grades
 - Mean: 79.3
 - Median: 78.9 (3.868, static)
 - Sigma: 19
 - Max: 110 (0.944, dynamic; 1.316, static)

Sizing Optimization

\[
\begin{align*}
LE &= 1 \times 1 \times \frac{4}{3} \times 2 \times 1 = \frac{8}{3} \\
FO &= 16 \\
\text{Branching : 4} \\
P &= \left(\frac{8}{3} \times 16 \times 4 \right)^{\frac{1}{3}} = 2.8 \\
\text{Size: } x &= 1.93 \\
y &= 4.08 \\
z &= 5.70 \\
\end{align*}
\]
Layout Techniques

- Size: 1265.22 µm²

 \[(33.00\text{µm} \times 38.34\text{µm})\]

- Critical Path drawn in arrow

- Aspect Ratio = 1.162

- Routing

 - Metal 1
 - Horizontal Line
 - VDD, GND

 - Metal 2:
 - Vertical Line

 - Metal 3:
 - Clock Signals

Memory
Semiconductor Memory Classification

<table>
<thead>
<tr>
<th>Read-Write Memory</th>
<th>Non-Volatile Read-Write Memory</th>
<th>Read-Only Memory</th>
</tr>
</thead>
<tbody>
<tr>
<td>Random Access</td>
<td>Non-Random Access</td>
<td></td>
</tr>
<tr>
<td>SRAM</td>
<td>FIFO</td>
<td>EPROM</td>
</tr>
<tr>
<td>DRAM</td>
<td>LIFO</td>
<td>E²PROM</td>
</tr>
<tr>
<td></td>
<td>Shift Register</td>
<td>FLASH</td>
</tr>
<tr>
<td></td>
<td>CAM</td>
<td>Mask-Programmed</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Programmable (PROM)</td>
</tr>
</tbody>
</table>

Read-Only Memory Cells

- **Diode ROM**
- **MOS ROM 1**
- **MOS ROM 2**
MOS NOR ROM

MOS NOR ROM Layout

Programming using the Active Layer Only

Cell (9.5λ x 7λ)

Polysilicon
Metal1
Diffusion
Metal1 on Diffusion
MOS NOR ROM Layout

Cell (11λ x 7λ)

Programming using the Contact Layer Only

- Polysilicon
- Metal1
- Diffusion
- Metal1 on Diffusion

All word lines high by default with exception of selected row

- Pull-up devices

MOS NAND ROM

- V_{DD}

All word lines high by default with exception of selected row
No contact to VDD or GND necessary; drastically reduced cell size
Loss in performance compared to NOR ROM

Programming using the Metal-1 Layer Only

MOS NAND ROM Layout

NAND ROM Layout

Programming using Implants Only
PMOS precharge device can be made as large as necessary, but clock driver becomes harder to design.

Semiconductor Memory Classification

<table>
<thead>
<tr>
<th>Read-Write Memory</th>
<th>Non-Volatile Read-Write Memory</th>
<th>Read-Only Memory</th>
</tr>
</thead>
<tbody>
<tr>
<td>Random Access</td>
<td>Non-Random Access</td>
<td>EPROM</td>
</tr>
<tr>
<td>SRAM DRAM</td>
<td>FIFO</td>
<td>E²PROM</td>
</tr>
<tr>
<td></td>
<td>LIFO</td>
<td>FLASH</td>
</tr>
<tr>
<td></td>
<td>Shift Register</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CAM</td>
<td>Mask-Programmed</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Programmable (PROM)</td>
</tr>
</tbody>
</table>
Non-Volatile Memories
The Floating-gate transistor (FAMOS)

Floating-gate Transistor Programming

Avalanche injection
Removing programming voltage leaves charge trapped
Programming results in higher V_T.
FLOTOX EEPROM

FLOTOX transistor

- Floating gate
- Source
- Substrate
- Drain
- Gate
- 20–30 nm

Fowler-Nordheim I-V characteristic

I

-10 V

V_{GD}

10 V

EEPROM Cell

Absolute threshold control is hard
Unprogrammed transistor might be depletion
⇒ 2 transistor cell
Cross Sections of NVM Cells

Read-Write Memories (RAM)

- **Static (SRAM)**
 - Data stored as long as supply is applied
 - Large (6 transistors/cell)
 - Fast
 - Differential

- **Dynamic (DRAM)**
 - Periodic refresh required
 - Small (1-3 transistors/cell)
 - Slower
 - Single ended
6-Transistor CMOS SRAM Cell

CMOS SRAM Analysis (Read)

\[k_{n,M5}(V_{DD} - \Delta V - V_{TH}) V_{DSATn} - \frac{V_{DSATn}^2}{2} = k_{n,M1}(V_{DD} - V_{TH}) \Delta V - \frac{\Delta V^2}{2} \]

\[\Delta V = \frac{V_{DSATn} + CR(V_{DD} - V_{TH}) - \frac{\sqrt{V_{DSATn}^2(1 + CR)}}{CR} + CR^2(V_{DD} - V_{TH})^2}{CR} \]
CMOS SRAM Analysis (Read)

\[
CR = \frac{W_1/L_1}{W_3/L_3}
\]

CMOS SRAM Analysis (Write)

\[
k_{n,M6}(V_{DD} - V_{Ta})V_Q - \frac{V_Q^2}{2} = k_{p,M4}(V_{DD} - |V_{Tp}|)V_{DSATp} - \frac{V_{DSATp}^2}{2}
\]

\[
V_Q = V_{DD} - V_{Ta} - \sqrt{(V_{DD} - V_{Ta})^2 - \frac{2}{i_a}V_{PPR}(V_{DD} - |V_{Tb}|)V_{DSATp} - \frac{V_{DSATp}^2}{2}}
\]
CMOS SRAM Analysis (Write)

![Graph showing cell voltage vs. pull-up ratio]

6T-SRAM Layout

![Diagram of 6T-SRAM layout with transistors and nodes labeled]

EE141 27

EE141 28
Resistive Load SRAM Cell

Static power dissipation -- Want R_L large
Bit lines precharged to V_{DD} to address t_p problem

3-Transistor DRAM Cell

No constraints on device ratios
Reads are non-destructive
Value stored at node X when writing a “1” = $V_{WWL} - V_{Tn}$
3T DRAM Layout

Write: CS is charged or discharged by asserting WL and BL.

Read: Charge redistribution takes place between bit line and storage capacitance. Voltage swing is small; typically around 250 mV.

1-Transistor DRAM Cell

Write: C_S is charged or discharged by asserting WL and BL.

Read: Charge redistribution takes place between bit line and storage capacitance.

$$
\Delta V = V_{BL} - V_{PRE} = V_{BIT} - V_{PRE} \frac{C_S}{C_S + C_{BL}}
$$

Voltage swing is small; typically around 250 mV.
1T DRAM Cell

Cross-section

Uses Polysilicon-Diffusion Capacitance
Expensive in Area

Micrograph of 1T DRAM
Advanced 1T DRAM Cells

- Trench Cell
- Stacked-capacitor Cell

Perspectives
EE141 Summary

- Digital circuit designers will have jobs in 2010+
- Major challenges
 - Cost
 - Power consumption
 - Robustness
 - Complexity
- Some new circuit solutions and design methodologies are coming

Technology Scaling

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Technology Node (nm)</td>
<td>90</td>
<td>65</td>
<td>45</td>
<td>32</td>
<td>22</td>
<td>16</td>
<td>11</td>
<td>8</td>
</tr>
<tr>
<td>Integration Capacity (BT)</td>
<td>0.5</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>8</td>
<td>16</td>
<td>32</td>
<td>64</td>
</tr>
<tr>
<td>Delay = CV/I scaling</td>
<td>0.7</td>
<td>~0.7</td>
<td>>0.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Energy/Logic Op scaling</td>
<td>>0.35</td>
<td>>0.5</td>
<td>>0.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bulk Planar CMOS</td>
<td>High Probability</td>
<td>Low Probability</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alternate, 3G etc</td>
<td>Low Probability</td>
<td>High Probability</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Variability</td>
<td>Medium</td>
<td>High</td>
<td>Very High</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ILD (K)</td>
<td>~3</td>
<td><3</td>
<td>Reduce slowly towards 2-2.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RC Delay</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Metal Layers</td>
<td>6-7</td>
<td>7-8</td>
<td>8-9</td>
<td>0.5 to 1 layer per generation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

 Courtesy: R. Krishnamurthy (Intel)
Research Roadmap

Device Evolution

Robert Chau, Intel, ICSICT 2004
25nm FinFET

25 nm MOS transistor (Folded Channel)

Cost

- Mask cost in 90nm technology is over $1M
- Bugs are very expensive
- Design effort increases in DSM
- Cost of new tools
- Non-recurring costs dominate the price effectiveness of low-volume ASICs
- Need to have a product that can fit multiple applications, customers (flexibility)
Power has become a Problem

Source: S. Borkar (Intel)

The Productivity Gap

Source: Sematech

Complexity outpaces design productivity
Some FPGA Examples

Xilinx Spartan-3

Xilinx IQ

The Architectural Tradeoff Game
The Challenge of the Next Decade

- The Deep Sub-Micron (DSM) Effect

\[\propto \text{DSM} \quad \propto \frac{1}{\text{DSM}} \]

“Microscopic Problems”
- Ultra-high speed design
- Interconnect
- Noise, Crosstalk
- Reliability, Manufacturability
- Power Dissipation
- Clock Distribution

“Macroscopic Issues”
- Time-to-Market
- Millions of Gates
- High-Level Abstractions
- Reuse & IP: Portability
- Predictability
- etc.

...and there’s a lot of them!

Everything looks a little different