Problem 1 – 2-T Memory Cell

The 2-T memory cell shown below uses 2 identical transistors with W/L = 0.4/0.25. Separate lines are provided for the read select (RS) and write select (WS) signals, which both switch between 0 and 2.5V. The Bit Line is precharged to Vdd/2 prior to a read. A write is done by pulling the bit line either to Vdd or to GND. Ignore the body effect and channel-length modulation. (γ=0; λ=0). You may assume that kn’ = 115 µA/V², Vdd=2.5, Vt = 0.4.

a) Explain the operation of the memory. Draw waveforms for BL, WS, and RS and Vx for reads and writes of both ‘1’s and ‘0’ s.
b) Determine maximum current through M2 during a read operation.
c) The bit line is connected to a single-ended sense-amp, which switches when the voltage reaches Vdd/2 ± 200mV. Compute the time required to read a data bit. Assume that Cc=10fF and Cb=2pF.
Problem 2 – DRAM Memory Cell

A 1-T DRAM cell as following consists of a single transistor connected in series with a capacitor. For a read, the bit line is precharged to $V_{DD}/2$ by a clocked precharge circuit. Then, the access transistor is turned on by applying V_{DD} to the word line. A write is performed by applying V_{DD} or GND to the bit line and V_{DD} to the word line. Assume that $V_{To} = 0.4 \text{ V}$, $\gamma = 0.3 \sqrt{\text{V}^{-1}}$, $|2\phi_F| = 0.6 \text{ V}$

a) Find the maximum voltage across the storage capacitor C_s after writing a 1 into the memory cell (i.e., bit line is driven to $V_{DD} = 2.5 \text{ V}$).

b) Ignoring leakage currents, find the voltage on the bit line when this “1” is read from the memory cell.