EE141-Fall 2004
Digital Integrated Circuits
Instructor: Borivoje Nikolić
TuTh 3:30-5
247 Cory

What is this class all about?
- Introduction to digital integrated circuits.
 - CMOS devices and manufacturing technology.
 - CMOS inverters and gates. Propagation delay, noise margins, and power dissipation.
 - Combinational and sequential circuits. Timing and clocking. Arithmetic, interconnect, and memories.
 - Design methodologies.
- What will you learn?
 - Understanding, designing, and optimizing digital circuits with respect to different quality metrics: cost, speed, power dissipation, and reliability.
 - Practical design using state-of-the-art tools.

Practical Information
- Instructor
 - Prof. Borivoje Nikolic
 570 Cory Hall, 643-6997, bora@eecs
 Office hours: Mo 10:30am-12pm, Th 3:00-4:00pm
- TAs:
 - Zhengya Zhang, zyzhang@eecs
 Office hours: W 2-3pm, 353 Cory
 - Bill Tsang, ctsang@eecs
 Office hours: M 4-5pm, 353 Cory
 - TBA
 Office hours: TBA
- Web page:
 http://bwrc.eecs.berkeley.edu/Classes/ICDesign/EE141_s06/

Discussions and Labs
- Discussion sessions
 - M 3-4pm, Zhengya Zhang, 293 Cory
 - W 3-4pm, Zhengya Zhang, 293 Cory
 - Same material in both sessions!
- Labs (353 Cory)
 - M 1-4pm, Bill Tsang
 - W 11am-2pm, TBA
 - F 2-5pm, Bill Tsang
- Please choose one lab session and stick with it!

Your EECS141 Week

<table>
<thead>
<tr>
<th>M</th>
<th>T</th>
<th>W</th>
<th>R</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>OH (Bora) at 521</td>
<td>OH (Bora) at 521</td>
<td>Lab (TBA) at 353</td>
<td>Lab (TBA) at 353</td>
<td>Lab (Bora) at 521</td>
</tr>
<tr>
<td>DISC (Zhengya) at 293</td>
<td>DISC (Zhengya) at 293</td>
<td>Lab (TBA) at 353</td>
<td>Lab (TBA) at 353</td>
<td>Lab (Bora) at 521</td>
</tr>
<tr>
<td>OH (Bora) at 521</td>
</tr>
</tbody>
</table>

* Discussion sections will cover identical material

Class Organization
- 10 Assignments
- One design project with three phases
- Labs: 5 software, 1 hardware
- 2 midterms, 1 final:
 - Midterm 1: Thursday, March 2, evening
 - Midterm 2: Thursday, April 6, evening
 - Final: Wednesday, May 19, 12:30-3:30pm
Some Important Announcements

- Please don’t bring food/drinks to 353 Cory
- Please use the newsgroup for asking questions (ucb.class.ee141)
- Project is done in pairs
- Homework is done individually
- Don’t even think about cheating!

Grading Policy

- Homeworks: 10%
- Labs: 10%
- Projects: 20%
- Midterms: 30%
- Final: 30%

Class Material

- Class notes: Web page
- Lab Reader: Available on the web page!
- Check web page for the availability of tools

The Web Site

- Class and lecture notes
- Assignments and solutions
- Lab and project information
- Exams
- Many other goodies …
- The sole source of information
 - http://bwrc.eecs.berkeley.edu/icdesign/eecs141_s06
 - Print only what you need: Save a tree!

Software

- Cadence
 - Industry standard
 - Online tutorials
 - We discontinued the use of MicroMagic in this class
- HSPICE and IRSIM for simulation

Getting Started

- Assignment 1: Getting SPICE to work – see web-page
- Due next Thursday, January 26, 5pm
- NO discussion sessions or labs this week.
- First discussion sessions in Week 2
- First Software lab in Week 3
Digital Integrated Circuits
- Introduction: Issues in digital design
- The CMOS inverter
- Combinational logic structures
- Sequential logic gates
- Design methodologies
- Interconnect: R, L and C
- Timing
- Arithmetic building blocks
- Memories and array structures

Introduction
- Why is designing digital ICs different today than it was before?
- Will it change in future?

The First Computer
- The Babbage Difference Engine
 - 25,000 parts
 - cost: £17,470

ENIAC - The First Electronic Computer (1946)

The Transistor Revolution
- First transistor
 - Bell Labs, 1948

The First Integrated Circuits
- Bipolar logic
 - 1960's
- ECL 3-input Gate
 - Motorola 1966
Intel 4004 Microprocessor

- 2,300 transistors (12mm²)
- 740 KHz operation
- (10μm PMOS technology)

Intel Pentium 4 Microprocessor

- Intel, 2005.
- 125,000,000 transistors (112mm²)
- 3.8 GHz operation
- (90nm CMOS technology)

Moore’s Law

- In 1965, Gordon Moore noted that the number of transistors on a chip doubled every 18 to 24 months.
- He made a prediction that semiconductor technology will double its effectiveness every 18 months.

Evolution in Complexity

Transistor Counts

- Doubles every 2 years
Frequency Trends in Intel's Microprocessors

Has been doubling every 2 years, but is now slowing down.

Power Trends in Intel's Microprocessors

Has been > doubling every 2 years.

Power delivery and dissipation will be prohibitive.

Power Density

Power density too high to keep junctions at low temperature.

Not Only Microprocessors

Cell Phone

Digital Cellular Market (Phones Shipped)

Units 48M 86M 162M 260M 435M

(data from Texas Instruments)

Productivity Trends

Complexity outpaces design productivity.

Source: ITRS Roadmap
Why Scaling?
- Technology shrinks by 0.7/generation
- With every generation can integrate 2x more functions per chip; chip cost does not increase significantly
- Cost of a function decreases by 2x
- But …
 - How to design chips with more and more functions?
 - Design engineering population does not double every two years...
- Hence, a need for more efficient design methods
 - Exploit different levels of abstraction

Challenges in Digital Design

- \(\propto DSM \)
 - "Microscopic Problems"
 - Ultra-high speed design
 - Interconnect
 - Noise, Crosstalk
 - Reliability, Manufacturability
 - Power Dissipation
 - Clock distribution.

- \(\propto 1/DSM \)
 - "Macroscopic Issues"
 - Time-to-Market
 - Millions of Gates
 - High-Level Abstractions
 - Reuse & IP: Portability
 - Predictability
 - etc.

Everything Looks a Little Different
… and There’s a Lot of Them!

Design Abstraction Levels

This Class
- Introduces basic metrics for design of integrated circuits – how to measure delay, power, etc.
- Groups layout rectangles into transistors and wires
 - Transistors and wires into gates
 - Gates into functions
 - (Functional blocks into systems) – e.g. EECS150
- Need to verify that the assumptions are valid

Next Lecture
- Introduces basic metrics for design of integrated circuits – how to measure delay, power, cost, etc.
- Brief intro to IC manufacturing and design