Announcements

- Project launch today
 - Phase 1 due March 20
- Homework #7 due next Thursday
 - No new homework next week
Class Material

- Last lecture
 - Design for speed
 - Method of logical effort
- Today’s lecture
 - SRAM design
- Reading (Chapter 12)
Array-Structured Memory Architecture

Semiconductor Memory Classification

<table>
<thead>
<tr>
<th>Read-Write Memory</th>
<th>Non-Volatile Read-Write Memory</th>
<th>Read-Only Memory</th>
</tr>
</thead>
<tbody>
<tr>
<td>Random Access</td>
<td>Non-Random Access</td>
<td>EPROM</td>
</tr>
<tr>
<td>SRAM, DRAM</td>
<td>FIFO</td>
<td>E²PROM</td>
</tr>
<tr>
<td></td>
<td>LIFO</td>
<td>FLASH</td>
</tr>
<tr>
<td></td>
<td>Shift Register</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CAM</td>
<td>Mask-Programmed Programmable (PROM)</td>
</tr>
</tbody>
</table>
Read-Write Memories (RAM)

- **STATIC (SRAM)**
 - Data stored as long as supply is applied
 - Large (6 transistors/cell)
 - Fast
 - Differential

- **DYNAMIC (DRAM)**
 - Periodic refresh required
 - Small (1-3 transistors/cell)
 - Slower
 - Single Ended

Positive Feedback: Bi-Stability
Meta-Stability

Gain should be larger than 1 in the transition region.

Writing into a Cross-Coupled Pair

Can implement as a transmission gate as well.
Access transistor must be able to overpower the feedback.
Complementary data values are written (read) from two sides

6-transistor CMOS SRAM Cell

Diagram of the 6-transistor CMOS SRAM cell with labels for transistors M₁, M₂, M₃, M₄, M₅, and M₆, and connections for signals WL, V_DD, Q, and BL.
SRAM Operation

Write

![Write diagram](image1)

Hold

![Hold diagram](image2)

SRAM Operation

Read

![Read diagram](image3)

Reading the cell should not destroy the stored value
CMOS SRAM Analysis (Read)

\[
k_{n,M2}\left(V_{DD} - \Delta V - V_{TN}\right) - \frac{V_{DSAT}}{2} = k_{n,M1}\left(V_{DD} - V_{TN}\right)\Delta V - \frac{\Delta V^2}{2}
\]

\[
\Delta V = \frac{V_{DSAT} + CR(V_{DD} - V_{TN}) - \sqrt{V_{DSAT}^2(1 + CR) + CR^2(V_{DD} - V_{TN})^2}}{CR}
\]
CMOS SRAM Analysis (Write)

\[PR = \frac{(W/L)_4}{(W/L)_6} \]

\[k_{x,M_0} \left((V_{DD} - V_{t_h})V_0 - \frac{V_0^2}{2} \right) = k_{p,M_1} \left((V_{DD} - |V_{t_p}|)V_{D\text{SAT}_p} - \frac{V_{D\text{SAT}_p}^2}{2} \right) \]

\[V_0 = V_{DD} - V_{t_n} - \sqrt{V_{DD} - V_{t_p}^2} - \frac{2 \mu C_{ox} P_{R}(V_{DD} - |V_{t_p}|)V_{D\text{SAT}_p} - \frac{V_{D\text{SAT}_p}^2}{2}}{2} \]

CMOS SRAM Analysis (Write)
Static Noise Margin

Obtained by breaking the feedback between the inverters

6T-SRAM — Layout

Compact cell
Bitlines: M2
Wordline: bootstrapped in M3
65nm SRAM

- ST/Philips/Motorola

Access Transistor

- Pull down
- Pull up

Next Lecture

- Alternate static logic styles
- Pass-transistor logic