EE141-Spring 2006
Digital Integrated Circuits

Lecture 25
Clock Distribution
Power Distribution

Administrative Stuff

- Homework #9 due this Thursday
- Visit to Intel, April 21
 - Signup sheet
 - Friday lab - project phase 4 starts after we get back
- Project phase 4
 - Posted
 - In lab April 21-April 27
- Hardware lab this week
 - Friday section on April 28
Class Material

- Last lecture
 - Timing
- Today’s lecture
 - Clock distribution
 - Power distribution
- Reading
 - Chapter 10, 9 (pp. 453-462, 469-475, 508-515)
Clock Distribution

H-tree

Clock is distributed in a tree-like fashion

More realistic H-tree

[Restle98]

EECS141
The Grid System

- No rc-matching
- Large power

Example: DEC Alpha 21164

- Clock Frequency: 300 MHz - 9.3 Million Transistors
- Total Clock Load: 3.75 nF
- Power in Clock Distribution network : 20 W (out of 50)
- Uses Two Level Clock Distribution:
 - Single 6-stage driver at center of chip
 - Secondary buffers drive left and right side clock grid in Metal3 and Metal4
- Total driver size: 58 cm!
21164 Clocking

- 2 phase single wire clock, distributed globally
- 2 distributed driver channels
 - Reduced RC delay/skew
 - Improved thermal distribution
 - 3.75nF clock load
 - 58 cm final driver width
- Local inverters for latching
- Conditional clocks in caches to reduce power
- More complex race checking
- Device variation

Clock waveform:
- \(t_{\text{rise}} = 0.35 \text{ns} \)
- \(t_{\text{skew}} = 150 \text{ps} \)
- \(t_{\text{cycle}} = 3.3 \text{ns} \)

Location of clock driver on die:
- Final drivers
- Pre-driver

Clock Drivers
Clock Skew in Alpha Processor

- 2 Phase, with multiple conditional buffered clocks
 - 2.8 nF clock load
 - 40 cm final driver width
- Local clocks can be gated "off" to save power
- Reduced load/skew
- Reduced thermal issues
- Multiple clocks complicate race checking

EV6 (Alpha 21264) Clocking
600 MHz – 0.35 micron CMOS

- Global clock waveform
 - $t_{cycle} = 1.67$ ns
 - $t_{rise} = 0.35$ ns
 - $t_{skew} = 50$ ps

- 2 Phase, with multiple conditional buffered clocks
- 2.8 nF clock load
- 40 cm final driver width
- Local clocks can be gated "off" to save power
- Reduced load/skew
- Reduced thermal issues
- Multiple clocks complicate race checking
21264 Clocking

![21264 Clocking Diagram]

EV6 Clock Results

- **GCLK Skew** (at Vdd/2 Crossings)
- **GCLK Rise Times** (20% to 80% Extrapolated to 0% to 100%)
EV7 Clock Hierarchy

Active Skew Management and Multiple Clock Domains

+ widely dispersed drivers
+ DLLs compensate static and low-frequency variation
+ divides design and verification effort
- DLL design and verification is added work
+ tailored clocks

Clock Animations

- By Phillip Restle (IBM)
http://www.research.ibm.com/people/r/restle/Animations/DAC01top.html
I/O Design

Bonding Pad Design

Bonding Pad

GND

V_{DD}

In

Out

100 μm
ESD Protection

- When a chip is connected to a board, there is unknown (potentially large) static voltage difference
- Equalizing potentials requires (large) charge flow through the pads
- Diodes sink this charge into the substrate – need guard rings to pick it up.
Chip Packaging

- Bond wires (~25μm) are used to connect the package to the chip
- Pads are arranged in a frame around the chip
- Pads are relatively large (~100μm in 0.25μm technology), with large pitch (100μm)
- Many chips areas are ‘pad limited’

Pad Frame

Layout

Die Photo
Chip Packaging

- An alternative is ‘flip-chip’:
 - Pads are distributed around the chip
 - The soldering balls are placed on pads
 - The chip is ‘flipped’ onto the package
 - Can have many more pads

Power Distribution
Impact of Resistance

- We have already learned how to drive RC interconnect.
- Impact of resistance is commonly seen in power supply distribution:
 - IR drop
 - Voltage variations
- Power supply is distributed to minimize the IR drop and the change in current due to switching of gates.

RI Introduced Noise

![RI Introduced Noise Diagram]
Resistance and the Power Distribution Problem

- Requires fast and accurate peak current prediction
- Heavily influenced by packaging technology

Power Distribution

- Low-level distribution is in Metal 1
- Power has to be 'strapped' in higher layers of metal.
- The spacing is set by IR drop, electromigration, inductive effects
- Always use multiple contacts on straps
Power and Ground Distribution

(a) Finger-shaped network
(b) Network with multiple supply pins

3 Metal Layer Approach (EV4)

3rd "coarse and thick" metal layer added to the technology for EV4 design

- Power supplied from two sides of the die via 3rd metal layer
- 2nd metal layer used to form power grid
- 90% of 3rd metal layer used for power/clock routing

Courtesy Compaq
4 Metal Layers Approach (EV5)

4th "coarse and thick" metal layer added to the technology for EV5 design
Power supplied from four sides of the die
Grid strapping done all in coarse metal
90% of 3rd and 4th metals used for power/clock routing

6 Metal Layer Approach – EV6

2 reference plane metal layers added to the technology for EV6 design
Solid planes dedicated to Vdd/Vss
Significantly lowers resistance of grid
Lowers on-chip inductance
Decoupling Capacitors

Decoupling capacitors are added:
- On the board (right under the supply pins)
- On the chip (under the supply straps, near large buffers)

Under the die
Next Lecture

- Adder design