EE141-Spring 2006

Digital Integrated Circuits

Lecture 29
Flash memory

Administrative Stuff

- Great job on projects and posters!
- Homework #10 due today
- Lab reports due this week
 - Friday lab in 353
- Final exam
 - May 19, 12:30-3:30pm 277 Cory

Class Material

- Last lecture
 - Finish adders
 - ROM
- Today’s lecture
 - Flash memory
 - DRAM
- Reading
 - Chapter 12 (pp. 634-647, 664-670)

Flash Memory

Read-Only Memory Cells

- Diode ROM
- MOS ROM 1
- MOS ROM 2

MOS OR ROM

- WL[0]
- WL[1]
- WL[2]
- WL[3]

- BL[0]
- BL[1]
- BL[2]
- BL[3]

- V_{DD}
- V_{SS}

- Pull-down loads
MOS NOR ROM Layout

Cell (9.5\(\lambda\) x 7\(\lambda\))

Programming using the Active Layer Only

- Polysilicon
- Metal1
- Diffusion
- Metal1 on Diffusion

Programmming using the Contact Layer Only

MOS NAND ROM Layout

Cell (11\(\lambda\) x 7\(\lambda\))

Programming using the Metal-1 Layer Only

Polysilicon
Metal1
Diffusion
Metal1 on Diffusion

No contact to VDD or GND necessary; drastically reduced cell size
Loss in performance compared to NOR ROM

NAND ROM Layout

Cell (5\(\lambda\) x 6\(\lambda\))

Programming using Implants Only

- Polysilicon
- Threshold-altering implant
- Metal1 on Diffusion
Equivalent Transient Model for MOS NOR ROM

Model for NOR ROM

- Word line parasitics
 - Wire capacitance and gate capacitance
 - Wire resistance (polysilicon)
- Bit line parasitics
 - Resistance not dominant (metal)
 - Drain and Gate-Drain capacitance

Equivalent Transient Model for MOS NAND ROM

Model for NAND ROM

- Word line parasitics
 - Similar to NOR ROM
- Bit line parasitics
 - Resistance of cascaded transistors dominates
 - Drain/Source and complete gate capacitance

Non-Volatile Memories
The Floating-gate transistor (FAMOS)

- Floating gate
- Source
- Gate
- Drain
- Substrate

Device cross-section
Schematic symbol

Floating-Gate Transistor Programming

- Avalanche injection
- Removing programming voltage leaves charge trapped
- Programming results in higher V_T

A “Programmable-Threshold” Transistor

- I_D vs. V_{GS}
- “0”-state
- “1”-state
- V_{WL}
- ΔV_T
- OFF

Flash EEPROM

- Control gate
- Floating gate
- Erasure
- Thin tunneling oxide
- Programming
- n^+ source
- p-substrate
- n^+ drain

Many other options ...
Cross-sections of NVM cells

Flash	EPROM

Basic Operations in a NOR Flash Memory—Erase

Basic Operations in a NOR Flash Memory—Write

Basic Operations in a NOR Flash Memory—Read

NAND Flash Memory

NAND Flash Memory
DRAM Cell Observations

- 1T DRAM requires a sense amplifier for each bit line, due to charge redistribution read-out.
- DRAM memory cells are single ended in contrast to SRAM cells.
- The read-out of the 1T DRAM cell is destructive; read and refresh operations are necessary for correct operation.
- When writing a “1” into a DRAM cell, a threshold voltage is lost. This charge loss can be circumvented by bootstrapping the word lines to a higher value than VDD.

Sense Amp Operation

- The diagram shows the voltage swing (VBL) as a function of time (t).
- The voltage is referenced to VREF and VBL.

1-T DRAM Cell

- The cell uses polysilicon-diffusion capacitance, which is expensive in area.

Modern 1T DRAM Cells

- Trench Cell
- Stacked-capacitor Cell
THE END

- But this is just the beginning…