Hw 6 posted.

Project phase 1 underway. Mail your group composition (list of names) to ee141@cory.eecs.berkeley.edu

No lecture on Fr
 - Make-up on Tu March 16 at 3:30pm
Class Material

- Last lecture
 - Optimizing complex logic
 - Pass transistor logic
- Today’s lecture
 - Pass transistor logic – continued
 - CMOS Layout
 - Pseudo-NMOS
- Reading (Ch 6)
Pass-Transistor Logic

- N transistors
- No static consumption

NMOS-Only Logic
NMOS Only Logic: Level Restoring Transistor

- Advantage: Full Swing
- Restorer adds capacitance, takes away pull down current at X
- Ratio problem

Restorer Sizing

- Upper limit on restorer size
- Pass-transistor pull-down can have several transistors in stack
Pass Transistor Logic LE

\[C_{\text{pass}} = \quad R_{\text{pass}} = \quad L_{\text{pass}} = \]

Complementary Pass Transistor Logic

(a) Basic concept

(b) Example pass-transistor networks
CPL Level Restore

Solution 2: Transmission Gate
Resistance of Transmission Gate

![Graph showing resistance vs. V_out]

Pass-Transistor Based Multiplexer

![Diagram of pass-transistor based multiplexer]
Transmission Gate XOR

CMOS Layout
Complex CMOS Gate

\[
\text{OUT} = D + A \cdot (B + C)
\]

Cell Design

- **Standard Cells**
 - General purpose logic
 - Used to synthesize RTL/HDL
 - Same height, varying width

- **Datapath Cells**
 - For regular, structured designs (arithmetic)
 - Includes some wiring in the cell
Standard Cell Methodology

- Feedthrough cell
- Logic cell
- Rows of cells
- Functional module (RAM, multiplier, ...)
- Routing channel

Standard Cells – Then and Now

(a)
(b)
Standard Cell Layout Methodology – 1990s - Today

No routing channels

M2

M3

Mirrored Cell

V_{DD}

V_{DD}

GND

GND

Cell boundary

N Well

Cell height 12 metal tracks

Metal track is approx. 3\lambda + 3\lambda

Pitch = repetitive distance between objects

Cell height is “12 Mn pitch”

Rails \sim 10\lambda
Standard Cells

With minimal diffusion routing

With silicided diffusion

Standard Cells

2-input NAND gate
Stick Diagrams

Contains no dimensions
Represents relative positions of transistors

Inverter

\[V_{DD} \]
\[GND \]
\[\text{In} \]
\[\text{Out} \]

NAND2

\[V_{DD} \]
\[GND \]
\[A \]
\[B \]

Two Versions of \(C \cdot (A + B) \)

\[A \]
\[C \]
\[B \]
\[V_{DD} \]
\[GND \]

\[A \]
\[B \]
\[C \]
\[V_{DD} \]
\[GND \]
Logic Graphs

\[X = C \cdot (A + B) \]

Consistent Euler Path

A B C
Has PDN and PUN

B C A
Has PUN, but no PDN
OAI22 Logic Graph

\[X = (A+B)(C+D) \]

Example: \(x = ab+cd \)

(a) Logic graph for \((ab+cd)\)

(b) Euler paths \((ab\ c\ d)\)

(c) Stack diagram for ordering \((ab\ c\ d)\)
Multi-Fingered Transistors

One finger

Two fingers (folded)

Less diffusion capacitance

Ratioed Logic
Ratioed Logic

Goal: build gates faster/smaller than static complementary CMOS

Ratioed Logic LE

- Rising and falling delays aren’t the same
 - Calculate LE for the two edges separately

- For tpLH:
 - \(C_{gate} = W C_G \)
 - \(C_{inv} = (3/2)W C_G \)
 - \(LE_{LH} = \)
Ratioed Logic LE (pull-down edge)

- What is LE for \(t_{pHL} \)?
- Switch model would predict \(R_{\text{eff}} = R_n || R_p \)
 - Would that give the right answer for LE?

Response on Falling Edge

- Time constant is smaller, but it takes more time to complete 50% \(V_{DD} \) transient (arguably)
 - \(R_p \) actually takes some current away from discharging \(C \)
Ratioed Logic Pull-down Delay

- Think in terms of the current driving C_{load}

- When you have a conflict between currents
 - Available current is the difference between the two
 - In pseudo-nMOS case:
 \[
 R_{drive} = \frac{1}{R_n} - \frac{1}{R_p} \quad \rightarrow \quad R_{drive} = \frac{R_n}{1 - \left(\frac{R_n}{R_p}\right)}
 \]
 - (Works because $R_p \gg R_n$ for good noise margin)

Ratioed Logic LE (pull-down edge)

- For t_{pHL} (assuming $R_{sqp} = 2R_{sqn}$):
 - $R_{gate} = R_n/(1-R_n/R_p) = 2R_n$
 - $R_{inv} = R_n$
 - $C_{gate} = WC_G$
 - $C_{inv} = 3WC_G$
 - $LE_{HL} =$

- LE is lower than an inverter!
 - But have static power dissipation…
Improved Loads

![Diagram of Improved Loads](image)

Adaptive Load

Improved Loads (2)

![Diagram of Improved Loads (2)](image)

Differential Cascode Voltage Switch Logic (DCVSL)
DCVSL Transient Response

DCVSL Example 1: AND
DCVSL Example2

XOR/XNOR gate