MOSFET Models for Design

- SPICE (BSIM)
 - For verification
 - Device variations

- Hand analysis
 - Velocity-sat model (good mostly for intuition)
 - Small-signal model

- Challenge
 - How to accurately design when hand analysis models may be way off?

Parameters Designers Care About

- Layout designer:
 - Mostly care about just W and L

- Circuit designer:
 - Gain \(g_m \)
 - Bandwidth \(g_m, C_{GS}, C_{GD} \)
 - Power \(I_D \)
 - Voltage swing \(V_{DS} \)
 - Noise

 - Can get many of the circuit parameters without resorting to BSIM
 - Or rather, by just using BSIM as a look-up table

Low Frequency Model

- 1st order Taylor expansion of \(I_D \):
 \[
 i_{ds} = \frac{\partial I_D}{\partial V_{GS}} v_{gs} + \frac{\partial I_D}{\partial V_{DS}} v_{ds} + \frac{\partial I_D}{\partial V_{DS}} v_{ds}
 \]
 \[
 i_{ds} = g_m v_{gs} + g_{mb} v_{bs} + b_{ds} v_{ds}
 \]
 - Just need to know the coefficients...

Square Law Model

- In saturation:
 \[
 g_m = \frac{\mu C_{ox}}{L} \sqrt{\frac{2 I_D}{W}}
 \]
 \[
 g_m = \frac{1}{2} \frac{\mu C_{ox}}{L} I_D \left(V_{GS} - V_P \right)^2 \left(\frac{1}{2} \right) \frac{1}{V_{DS} - V_P}
 \]
 \[
 g_m = 2 \frac{I_D}{V_{GS} - V_T} = \frac{2 I_D}{V_D}
 \]

Weak Inversion \(g_m \)

- In weak inversion we have bipolar behavior
 \[
 I_D \approx \frac{W}{L} I_{DS} \left(e^{\frac{V_{GS} - V_T}{V_P}} - 1 \right)
 \]
 \[
 g_m = \frac{\partial I_D}{\partial V_{GS}} = \frac{W}{L} \frac{I_{DS} \left(e^{\frac{V_{GS} - V_T}{V_P}} - 1 \right)}{n e T}
 \]
 - Good model if transistor is actually used in weak inversion
 \[
 g_m = \frac{I_{DS}}{V_D} \approx I_{DS}
 \]
Transconductance

\[g_m \approx \frac{W}{L} \left(V_{GS} - V_T \right) \]

Weak inversion

Strong inversion

Open-loop Gain \(a_vG \)

- Represents maximum attainable gain from a transistor
 - May be more useful than \(r_o \)

Simulation Notes:
- Bias current \(I_b \) sets \(V_{GS} \) - \(V_T \)
- Use feedback to find correct \(V_{GS} \) while sweeping \(V_{DS} \)
- Use relatively small gain (100) for fast DC convergence

Transconductance (cont)

- Compare \(g_m \) of MOSFET and BJT:
 \[g_{mFET} = \frac{2I_{ds}}{V_{Vd}} \quad g_{mBJT} = \frac{I_C}{V_t} \]
- Since \(V_{od} \gg V_T \), BJT has larger \(g_m \) for same \(I_o \)

- Why can’t we make \(V_{od} \approx V_T \)?
 - You can – if you work in subthreshold
 - Gives great \(g_m \) per unit current
 - But pay a penalty in speed (will see shortly)

Gain, \(a_vG = g_m r_o \)

Long Channel Gain

\[L = 0.35 \mu m \]

\[L \uparrow \rightarrow a_v \uparrow \]

Output Resistance \(r_o \)

Hopeless to model this with a simple equation (e.g. \(g_{ds} = \lambda I_o \))
Technology Trend

Short channel devices usually have lower peak gain.

SPICE Charge Model

- Charge conservation

- MOSFET:
 - 4 terminals: S, G, D, B
 - 4 charges: Q_s + Q_g + Q_d + Q_b = 0 (3 free variables)
 - 3 independent voltages: V_{gs}, V_{ds}, V_{sb}
 - 9 derivatives: C_{ij} = dQ_i / dV_j, e.g., C_{D,G,S} - C_{G,S}
 - C_{ij} != C_{ji}

Small Signal Capacitances

\[
C_{gi} = C_{W,L} \frac{W}{X} \\
C_{iB} = \frac{X}{X} \frac{W}{L}
\]

0.35\mu Process

\[
C_{w,S} = \frac{5.3 \text{ fF/\mu m}^2}{C_{w,G}} = \frac{0.24 \text{ fF/\mu m}}{C_{w,S}} = \frac{0.48 \text{ fF/\mu m}}{C_{w,G}}
\]

Small-Signal AC Model

For practical \(V_{ds} \) gain penalty is less severe (remember: worst case \(V_{ds} \) is what matters!)

Layout

Individual devices:

\[
A_{S} = A_{D} = \frac{1 \mu m}{1} \text{ W} \\
F_{S} = F_{D} = \frac{2 \mu m}{1} \text{ W} \\
e.g., W_{S}, W_{D} = 10 \mu m, \ V_{S}, V_{D} = 0 V \\
C_{S} = 20F \\
C_{D} = 10F
\]

Wide devices consisting of multiple individual ones wired in parallel:

\[
A_{S} = A_{D} = \frac{1 \mu m}{1} \text{ W} \\
F_{S} = F_{D} = \frac{2 \mu m}{1} \text{ W} \\
e.g., W_{S}, W_{D} = 20 \mu m, \ V_{S}, V_{D} = 0 V \\
C_{S} = 20F \\
C_{D} = 10F
\]
Source/drain Parasitics and HSPICE

- ACM = 3 model (not in our current library)
 - HDIF = half of heavily doped diffusion length
- GEO = 0: No sharing
- GEO = 1: Drain shared
- GEO = 2: Source shared
- GEO = 3: Both shared

Efficiency as a Design Parameter

- Why not use \(g_m / I_D \) for design?
- Can always determine value (from \(I_D \) and \(g_m \))
 - Can do this “independently” of short channel effects (using simulator)
- Units (\(V^{-1} \)) and physical interpretation a little strange
 - But we’ll just redefine things slightly to fix this

Figure of Merit: \(g_m / I_D \)

\[
g_m = \frac{1}{\sqrt{4kT}} \quad \text{and} \quad \frac{g_m}{I_D} = \frac{2}{V_{gs} - V_T} = \frac{2}{V_{dsat}}
\]

- How much \(g_m \) per unit current
- Purely a DC metric
 - Weak and moderate inversion region clearly the most efficient regions to operate in

Substitute for \(g_m / I_D \): \(V^* \)

- Define:
 \[
 V^* = \frac{2I_D}{g_m} \quad \Rightarrow \quad \frac{g_m}{I_D} = \frac{2}{V^*}
 \]
- Square-law devices: \(V^* = V_{gs} - V_{th} = V_{sd} \)
- Remember: real devices do not obey the square law!

Efficiency \(g_m / I_D \)

- In weak or moderate inversion, approaches BJT
 \[
 g_m / I_c = 1 / V_i \approx 40 \, V^{-1}
 \]
- Largely independent of device type
 - NMOS/PMOS about the same

Dynamic Figure of Merit

- Unity current-gain bandwidth
 \[
 \omega_T = \frac{g_m}{C_{gs} + C_{gd}}
 \]
 \[
 \omega_T = \frac{3 \mu V_{dsat}}{2 I_c} \quad \text{(Long channel model, } C_{gd}=0)\]
- For degenerate short channel device
 \[
 \omega_T = \frac{3 \mu V_{real}}{2 I_c} \quad \text{for } \frac{1}{2} r_{osat}
 \]
Efficiency g_m/I_D versus f_T

- NMOS faster than PMOS
- Speed-Efficiency Tradeoff
- 0.35 µm Process

V_{od} vs V^*

- Overdrive voltage V_{od}
 - Cannot be measured
 - Complex equations
- "Long channel" devices:
 - $V_{od} = V_{dsat} = V^*$
 - $I_D \propto V^2$
 - Boundary between triode and saturation
 - f_T "large" for $V_{dsat} > V^*$
 - C_{GS}, C_{GD} change
- "Short channel" devices:
 - All interpretations of V^* are approximations
 - Except $V^* = 2I_D/g_m$ (but $V^* \neq V_{dsat}$)

Device Scaling

- Short channel devices significantly faster

Composite Figure-of-Merit: $f_T \cdot g_m/I_D$

- Peak performance for low $V_{dsat} - V_{th}$ (implies low V^*)

Design Example

- Example: Common-source amp $a_u > 70, f_u = 100$ MHz for $C_L = 5$ pF
 - $a_u > 70 \Rightarrow L = 0.35 \mu m$
 - $g_m = 2\pi \cdot C_L = 3.14 \text{ mS}$
 - High f_t (small C_{gd}): $V^* = 200 \text{ mV}$
 - $I_D = \frac{V^*}{2} = 314 \mu A$

Device Sizing

- Pick $L = 0.35 \mu m$
- Pick $V^* = 200 \text{ mV}$
- Determine $g_m = 3.14 \text{ mS}$
- $I_D = 0.5 \cdot g_m \cdot V^* = 314 \mu A$
- W from graph (generate with SPICE)
 - $W = 10 \mu m (314 \mu A / 141 \mu A) = 22 \mu m$
- Create these graphs for several device lengths
Common Source Verification

- Amplifier gain > 70
- Amplifier unity gain frequency is "dead on"
- Output range limited to 0.6 V – 1.5 V to maintain gain (about ±0.45V swing)

Small Signal Design Summary

- Determine g_m (from design objectives)
- Pick L
 - Short channel \rightarrow high f_T
 - Long channel \rightarrow high r_o, a_v, better matching
- Pick V^* = $2L/g_m$ based on qualitative interpretation
 - Small V^* \rightarrow large signal swing, high current efficiency
 - High V^* \rightarrow high f_T
 - Also affects noise (see later)
- Determine I_D (from g_m and V^*)
- Determine W (SPICE / plot) \leftarrow takes care of short channel effects, etc.
- Accurate for short channel devices \rightarrow key for design

Device Parameter Summary

<table>
<thead>
<tr>
<th>Device Parameter</th>
<th>Circuit Implications</th>
</tr>
</thead>
</table>
| V^* | Current efficiency, g_m/I_D
| | Power dissipation (I_D)
| | Speed (g_m)
| | Cutoff frequency, f_T \rightarrow phase margin, noise
| | Headroom, $V_{DS,MIN}$
| L | Cutoff frequency, f_T \rightarrow phase margin, noise
| | Intrinsic transistor gain (a_v)
| W | Obtain from L, I_D (complicated equations!)
| | Self loading (C_{GSS}, C_{GDS}, ...)

Device Sizing Chart

Generate these curves for a variety of L’s and device flavors (NMOS, PMOS, thin oxide, thick oxide, different V_{TH})