Bias Current Sources

- What makes a current source a current source?
 - High output impedance

- Other important properties:
 - Voltage range (V_{min})
 - Noise
 - Accuracy

- Techniques: cascoding, gain boosting
Bias Current Source

- Is this a “good” bias current source?

Current Mirror

- Better approach: current mirror
Noise

\[\overline{i_{in}} = \overline{i_{d1}} + M^2 \overline{i_{d2}} \]
\[= 4k_B T f \left(g_{m1} + M^2 g_{m2} \right) \Delta f \]
\[= 4k_B T g_{m1} \Delta f \]
\[= 4k_B T \frac{1}{R_N} \Delta f \]

\[R_N = \frac{1}{\gamma} \frac{g_{m1}}{1 + M} \]
\[= \frac{r_o \gamma}{a_{o0} (1 + M) } \ll R_o = r_o \]

- M2 adds noise
 - Choose small M (power), or
 - Filter at gate of M1

- Current source FOMs
 - Output resistance \(R_o \)
 - Noise resistance \(R_N \)
 - Active sources boost \(R_o \), not \(R_N \)

Noise cont’d

- \(I_i^2 \) from transistor current source much larger than real R with same output impedance

- So why do we use transistors as current sources?
V_{min} versus Noise

- Voltage required for large r_o ("saturation"): $V_{min} \sim V^*$

- Minimum noise (for given I_D):
 - Large R_N
 - Large V^* (and, hence, V_{min})

- Eats into signal swing…

\[R_N = \frac{1}{\frac{1}{\gamma g_m} + \frac{1}{1 + M}} = \frac{V_{min}}{2 \gamma k I_D} \]

Bipolar’s, GaAs, …

- Increasing R_E lowers noise
- Same in MOS, BJT, etc.
- V_{min} always trades with noise

- Lowest possible noise: resistor (large V_{min})

\[V_{min} = k \times V^* \quad \text{typ.} \quad k = 1...2 \]
Cascoding

Output Resistance
\[R_{\text{out}} = f(k) \]

\[V_{DS1} = kV_1^* \]

How to choose k?

- Large \(k \) useful only for large \(V_{\text{min}} \)
- But, little penalty for large \(k \) and small \(V_{\text{min}} \)
 - Typically choose \(k > 1 \)
 - Get benefit if \(V_{ds} \) is big

High-Swing Cascode Biasing

- Need circuit for generating \(V_{bias2} \)
- Accuracy important for high \(V_{ds}/\text{high} \) \(Ro \)
 - In practice, not quite as critical (\(V_{ds} \) often low)
- Assume you’ve seen these before
 - Review G & M if not
High-Swing Bias Example

- M_5 sets $V_{DS3} = V_{DS1}$: improves matching
- M_4 quarter size or less
 - $M=1/5$ for high R_{out}
 - Note: $M \neq k$

Gain Boosting

- Use feedback to further increase R_{out}
 - No increase of V_{min}
 (unlike double cascode)
Local Feedback and Stability

Gain-Boosted Z_{out}
Pole-Zero Doublets

If it works, do it again!

• Since in advanced scaled CMOS \(g_{m}r_{o} \) is small, we can use nested gain boosting for higher output impedance.
• Watch out for pole-zero doublets!
Cascode Sizing