Bias Current Sources

- What makes a current source a current source?
 - High output impedance

- Other important properties:
 - Voltage range (V_{min})
 - Noise
 - Accuracy

- Techniques: cascoding, gain boosting

Bias Current Source

- Is this a “good” bias current source?

Noise

\[
\begin{align*}
\bar{I}_c &= I_c^0 + M \bar{I}_m^0 \\
&= kT (g_m^0 + M^2 g_m^0) A_f \\
&= kT g_m^0 \left(1 + M^2 \right) A_f \\
&= kT g_m^0 \frac{1}{R_n} A_f
\end{align*}
\]

- M^2 adds noise
 - Choose small M (power), or
 - Filter at gate of M1

- Current source FOMs
 - Output resistance R_o
 - Noise resistance R_n
 - Active sources boost R_o, not R_n

Noise cont’d

- I_c^2 from transistor current source much larger than real R with same output impedance

- So why do we use transistors as current sources?
V_{min} versus Noise

- Voltage required for large r_e ("saturation"): $V_{sat} \sim V^*$
- Minimum noise (for given I_D):
 - $R_g \to$ large R_g
 - $V^* \to$ large V^* (and, hence, V_{min})
- Eats into signal swing...

\[V_{sat} = k \times V^* \quad \text{typ.} \quad k = 1...2 \]

\[R_g = \frac{1}{g_{m}^2} \frac{1}{1 + M} \]

\[V_{sat} = V_{GS} - V_{th} \]

Output Resistance

- Bipolar’s, GaAs, …

\[\frac{V_{sat}}{I_d} = \frac{1}{g_{m}} \frac{g_{m}}{g_{m}} \]

- Increasing R_g: lowers noise
- Same in MOS, BJT, etc.
- V_{sat} always trades with noise
- Lowest possible noise: resistor (large V_{min})

R_{out} = f(k)

- $V_{DR} = kV^*$
- How to choose k?
 - Large k useful only for large V_{out}
 - But, little penalty for large k and small V_{sat}
 - Typically choose $k > 1$
 - Get benefit if V_{sat} is big

Cascoding

- Need circuit for generating V_{bias2}
- Accuracy important for high V_{sat}/high R_o
- In practice, not quite as critical (V_{sat} often low)
- Assume you’ve seen these before
- Review G & M if not
High-Swing Bias Example

- M_2 sets $V_{DS2} = V_{DS1}$: improves matching
- M_4 quarter size or less
 - $M = 1/5$ for high R_{out}
 - Note: $M \neq k$

Gain-Boosted Z_{out}

Gain Boosting

- Use feedback to further increase R_{out}
 - No increase of V_{out}
 - (unlike double cascode)

Pole-Zero Doublets

Local Feedback and Stability

If it works, do it again!

- Since in advanced scaled CMOS g_{mro} is small, we can use nested gain boosting for higher output impedance.
- Watch out for pole-zero doublets!
Noise Analysis

Noise Summary

Cascode Sizing