Simulating Stability

- \(T(s) \) can be very tricky to find in simulation
- Need to decouple transistor parasitics from the transistor
 - No generally perfect way to do this

Middlebrook Method (1975)

\[
\begin{align*}
T &= g_m Z_1 + Z_2 \\
\text{Solving yields:} & \quad T = \frac{g_m Z_1 + Z_2}{Z_1 + Z_2}
\end{align*}
\]

- Measure \(T_v \) and \(T_i \), then calculate actual \(T \)

Simple Circuit Example

- Stability often set by non-dominant poles
 - Ignore \(r_o \) to simplify analysis
 - Feedback factor: \(F = \frac{C_f}{C_i + C_f} \)

Common Approach

- Implies small \(C_f \) is desirable (min. loading)
 - Careful with noise…

Loop Gain

\[
T(s) = \frac{C_f (C_i + C_f)}{C_f + C_i + C_f}
\]

- \(C_{f,\text{on}} = C_f \) when \(C_i \) is large

\[
T_{\text{on}} = \frac{C_f (C_i + C_f)}{C_f + C_i + C_f}
\]

- \(C_{f,\text{off}} = C_f \) when \(C_i \) is small

\[
T_{\text{off}} = \frac{C_f C_i}{C_f + C_i + C_f}
\]
Closed-Loop Gain

- CL transfer function (ignoring r_o):
 \[A_v = \frac{V_o}{V_i} = \frac{C_s}{C_f} \left(\frac{1-sC_s/g_m}{1+sC_f/\left(Fg_m\right)} \right) \]
- Why RHP zero?
 - Feedforward current

Noise

Design Procedure (Example)

- Given DR, calculate C_L
 - Actually loaded by $C_{L_{eff}}$, but ignore that at first
- Given BW, calculate g_m
- Choose V^*
 - Tradeoffs:
 - Low V^*: good g_m/I_d
 - High V^*: lower C_s, larger F
 - (Usually start with low V^*)
- Calculate W
 - Now know C_i - can fix C_f (noise)
 - Re-iterate based on new $C_{L_{eff}}$