Settling

Why interested in settling?
- Oscilloscope: track input waveform without ringing
- ADC (switched-cap amplifier): gain a signal up a precise amount within T_{sample}

Step Response

Two types of settling “errors”:
- Static
 - Finite gain, capacitor mismatch
- Dynamic
 - Takes time to reach final value
Static Error

\[\frac{V_o}{V_i} = \frac{c}{1 + \frac{1}{F A_w}} \]

\[F = \frac{C_f}{C_f + C_i + C_v} \]

\[c = \frac{C_i}{C_f} \]

Example:
- Closed loop gain: \(c = -4 \), \(C_i = 1 \mu F \), \(C_v = 4 \mu F \), \(C_f = 1 \mu F \)
- \(F = 1/6 \) (\(C_i \) hurts!)

Error specification: <0.1%
- \(FA_v > 1000 \)
- \(A_v > 6000 \) over output range

Single Time Constant Linear Settling

For dynamic settling (and for \(T_0 \gg 1 \)), can generally ignore \(r_o \)

\[\frac{V_o}{V_i} = \frac{1 - s C_f G_m}{1 + \frac{1}{C_f (1 - F K_v)} FG_w} \]

Dynamic Errors

- Many possible dynamic effects that impact settling error:
 - Finite bandwidth
 - Feedforward zero
 - Non-dominant poles
 - Doublets
 - Slewing

- Approximate analysis approach:
 - Decompose each error source, isolate interactions
 - Add all errors together

Time Domain Step Response

Frequency domain:

\[V_{s,exp} = \frac{1}{1 + s / z} V_{exp} \]

Time domain:

\[v_{s,exp}(t) = -V_{exp} e^{-\frac{t}{\tau}} \]

\[\tau = \frac{1}{s / z} \frac{1}{1 + s / p} \frac{1 + s / z}{1 + s / p} \]

Output step:

\[V_{o,exp} = \frac{1 + s / z}{1 + s / p} V_{exp} \]

\[= -\frac{1 + s / z}{1 + s / p} V_{exp} e^{-\frac{t}{\tau}} \]

\[\tau = \frac{1}{s / z} \frac{1}{1 + s / p} \frac{1 + s / z}{1 + s / p} \]

Exponentially decaying error

Applications?
Case 1: $|p/z| << 1$

$$v_{\text{step}}(t) = -V_0 e^{-t/\tau} \left(1 - e^{-t/\tau}\right)$$

Relative settling error:

$$\epsilon = \frac{v(t \to \infty) - v(t = t_s)}{v(t \to \infty)} = e^{-t/\tau} \ln(1 - \epsilon)$$

- Easiest number to remember: 2.3τ per decade
- Example: 1% settling, 4.6ns clock cycle: $\tau = 1\text{ns}$
- $C_{\text{L,eff}}$ usually set by noise – use settling to determine required g_m

Case 2: $|p/z|$ not negligible

$$v_{\text{step}}(t) = -V_0 e^{-t/\tau} \left(1 - \left(1 + \frac{p}{z}\right) e^{-t/\tau}\right)$$

Relative settling error:

$$\epsilon = \frac{v(t \to \infty) - v(t = t_s)}{v(t \to \infty)} = \left(1 + \frac{p}{z}\right) e^{-t/\tau} \ln(1 - \epsilon)$$

- Example:
 - $c = 0.25$, $C_i = 1\text{pF}$, $C_a = 250\text{fF}$, $C_i = 250\text{fF}$, $C_v = 1\text{pF}$
 - $F = 0.67$, $C_{\text{L,eff}} = 1.33\text{pF}$
- $\epsilon = 0.1\%$: t_s (no feedforward) = 6.9τ
- t_s (with feedforward) = $-\ln(1e^{-3}/(1+0.67*0.75)) = 7.3\tau$

Non-Dominant Pole

- Ignore feed-forward zero for simplicity
 - (Just increases final swing by $1 + FCf/C_{\text{L,eff}}$)

$$H(s) = \frac{v_{\text{out}}}{v_{\text{in}}} = -\frac{1}{1 + \frac{C_{\text{L,eff}}}{C_f}}$$

- Model for non-dominant pole:

$$G_c(s) = \frac{G_{\text{out}}}{1 + s/\omega_c}$$

$$p_x = K\omega_c$$

ω_c is unity gain bandwidth of $T(s)$

Settling Time

$$t_s(K) \text{ for } \epsilon = 10^{-3}, \tau = 1$$

- Optimum at $K=3.3$
- Avoid $K < 2$
Doublets

- Amplifier model:
 \[G_m(s) = G_m \left(\frac{1 + s/\omega}{1 + s/\omega_p} \right) \]
 \[\omega_p = \alpha \omega \quad \text{with} \quad \alpha = 1 + \varepsilon \quad \text{with} \quad |\varepsilon| \ll 1 \]

- Closed-loop gain (ignore feedforward zero):
 \[\frac{V_o}{V_{in}} = \frac{1}{1 + s/\omega} \left(1 + \frac{1 + s/\omega}{1 + s/\omega_p} \right) \]
 \[\omega = \alpha \omega \quad \text{and} \quad \frac{F G_m}{C_{ef}} \]

Doublet Conclusions

- Case A: \(T_d \leq T_i \) i.e. \(\beta \geq 1 \)
 - Doublet settles faster than amplifier
 - Has no impact on overall settling time

- Case B: \(T_d > T_i \)
 - Doublet settles more slowly than amplifier
 - Determines overall settling time (unless \(\varepsilon \) within settling accuracy requirements)

 \[\Rightarrow \text{Avoid “slow” doublets!} \]

Doublet Analysis

- Step response
 \[v_{in,exp}(t) = -c V_{in} \left(1 - A e^{-\alpha \omega} - B e^{-\beta \omega} \right) \]
 \[B = \varepsilon \frac{\beta}{1 - \beta} \]
 \[A = 1 - B = 1 \]

Final Note on Doublets

- Transconductor \(\Delta I \) vs. \(\Delta V \):

Slewing

- Model for (nonlinear) slewing amplifier
 - Piecewise linear approximation:
 - Slewing with constant current, followed by
 - Linear settling exponential
 - \(t_s = t_{slow} + t_{s,lin} \)
Slewing Analysis

- Circuit model during slewing:

\[\begin{align*}
V_x & = \frac{C_s}{C_p + C_L} V_i \\
\text{Vo} & = \text{ISS}
\end{align*} \]

Slewing Analysis (cont.)

- Slewing period:

\[V_{\text{comp}} = V_{\text{comp}} \left(\frac{C_s}{C_p + C_L} \right) \quad \text{with} \quad C_i = C_s + \frac{C_s C_l}{C_p + C_L} \]

\[\Delta V = V_{\text{comp}} - V^* \rightarrow \Delta V = \frac{\Delta V}{F} \]

\[t_{\text{lin}} = \frac{\Delta V}{S R} = \frac{\Delta V}{F_{\text{lin}}} \]

- Linear settling during final \(V^* \) of swing at \(V_x^* \):
- Step during linear settling:

\[V^* = F \]

- Linear settling time:

\[t_{\text{lin}} = \ln \left(\frac{e^{V_{\text{lin}}/F}}{V^*} \right) \]