Design Example

• What are the specs?
 • And where do they come from?

• Example: 50MS/s, ~11-bit ADC
 • Accuracy:
 • Settling time:
 • Dynamic range:
 • Closed-loop gain:
 • Power:
Design Procedure

Design Procedure Cont’d
Finding C_L

Settling
Device Sizing

Settling?
Slewing

Problem with Common-Mode

- What if $I_L < \frac{I_{tail}}{2}$?
 - Will capacitive feedback solve this?

- Typical solution: Common-mode feedback
 - Sense CM at output
 - Adjust some knob to alter CM
Common-Mode Sensing

- Simplest CM sensor: pair of resistors

- Resistors load the OTA (reduce gain)
 - If make R large, get slow V_{cm} tracking
 - Is this a problem?

Sensing Scheme #2

- Isolated CM sensing
 - Works reasonably well
 - But hard to use with wide swing amplifier output
Capacitive Sensing

- Capacitive sensing avoids DC loading
 - (still creates AC load though)
- Needs to be reset to remove initial offset
 - Just like capacitive feedback

Adjusting Common-Mode

- Really only two knobs:
 - Knob A: adjust load current
 - Knob B: adjust tail current
Example Common-Mode Feedback

- Secondary amplifier enforces $V_{cm} = V_{cm_ref}$
- Place dominant pole at V_{bp}, or V_{cm}?

CMRR Fix

- What if two PMOS transistors aren’t perfectly matched?
Capacitive CMFB

- How to choose C_{cm}?
 - “Small”: CM loop gain low
 - “Large”: Loading on diff. output high
“Continuous” CMFB