Why use Multi-Stage Amplifiers?

• Single-stage amplifier:
 • Generally have to trade between swing and gain
 • (Need cascodes and/or large V_{min} for current sources)

• Multi-stage amplifier:
 • Higher gain without sacrificing swing
 • (Gain-boosted cascode is multi-stage amplifier in disguise)

• Challenge: stability!
Stability for Simple 2-Stage Amp

Two closely spaced poles - is this circuit stable?

2-Stage Stability cont’d
Compensation Techniques

- Many options – best one depends on situation at hand

- Look at a few general categories:
 - Narrowbanding
 - Wideband input stage (pre-amp)
 - Feedforward
 - Miller

Narrowbanding

- Narrowbanding
 - Lower one of the poles
 - Or introduce a new one

- Stability OK, but (feedback) bandwidth often low
 - Example: offset cancellation
Pre-amp

- Build a pre-amp with bandwidth much higher than 2nd stage
 - Usually limits achievable pre-amp gain

Miller Compensation

- Very common form of compensation
 - Why is this “pole splitting” good?
Alternative Explanation

- C_c forms another feedback loop
 - $1/F = 1/(sC_c)$
 - Low freq: $1/F > A_{v0}$
 - High freq: CL gain reduced

Miller Compensated Poles/Zeros
Phase Margin Engineering

\[\omega_u \approx \frac{F}{C_c} \frac{g_{m1}}{g_{m2}} \]

\[|p_2| \geq K \omega_u \]

- Higher \(K \) → higher \(C_c \)

- For fixed \(C_c \), larger \(C_L = C_2 \) lowers phase margin

\[\frac{z}{\omega_u} = \frac{1}{F} \frac{g_{m2}}{g_{m1}} \]

\[\frac{z}{|p_2|} \approx \frac{C_2}{C_c} \]

Nulling Resistor

\[z \rightarrow \frac{1}{\left(\frac{1}{g_{m2}} - R_z \right) C_c} \]

- \(R_z \) limits feedforward current at high frequency
 - Pushes feedforward zero to higher frequency
 - Adds new pole \(p_3 \)

\[p_1, p_2 : \text{ no change} \]

\[p_3 \approx -\frac{1}{R_z C_1} \]
Nulling Resistor Implementation

Cascode Compensation (Ahuja)

- No RHP zero
- But cost in power can be high
 - \(I_2 \) needs to slew \(C_c \)
Cascode Compensation (Ribner)

Noise Analysis
Total Noise at Output

2-Stage CMFB
2-Stage CMFB