Offset

• To achieve zero offset, comparator devices must be perfectly matched to each other
• How well-matched can the devices be made?
 • Not arbitrary – direct function of design choices

Sources of Local Variation

• Deterministic sources:
 • Local poly density
 • Sub-90nm: stress, litho interactions, ...

• Random sources:
 • Dopant fluctuations
 • Line-edge roughness
 • Oxide traps

• Focus our modeling on random variations
 • Deterministic handled with good layout practices

Device Mismatch Categories

• Die-to-die
 • All devices on same chip (or wafer) have same characteristics

• Within die (long-range)
 • All devices within certain region have same characteristics

• Local (short-range)
 • Every device different, random
 • Usually most important source of mismatch

References

 • Mismatch model
 • Statistical data for 2.5µm CMOS

 • 0.18µm CMOS data

Mismatch Statistics

• Total mismatch set by composite of many single, independent events
 • Correlation distance << device dimensions
 • E.g., number of dopant atoms implanted into the channel

• Individual effects are small: linear superposition holds

•Mismatch is zero mean, Gaussian distribution
Parameter Mismatch Model

\[\sigma^2(\Delta P) = \frac{\sigma_P^2}{WL} + S_P^2 D_t^2 \]

\(\sigma^2(\Delta P) \): standard deviation of \(P \)
\(WL \): active gate area
\(D_t \): distance between device centers
\(A_P \): measured area proportionality constant
\(S_P \): measured distance proportionality constant,
\(: \neq 0 \) for "good" layout

V_T Mismatch

- Mismatch in \(V_T \) between two identical devices:

\[\sigma^2 (\Delta V_T) = \frac{A_{V_T,MAX}}{WL} + S_{V_T} D_t^2 \]

2.5\(\mu \)m CMOS process:
\(A_{V_T,MAX} \approx 30 \text{ mV/\mu m} \)
\(A_{V_T,MIN} \approx 35 \text{ mV/\mu m} \)

- Often largest source of offset

Back-Gate Bias, \(V_{SB} \)

- Mismatch can depend on \(V_{SB} \)

- Why?

Current Matching, \(\Delta I_D/I_D \)

Strong bias dependence (we knew that already)

Drain Bias, \(V_{DS} \)

\(\Delta V_T \) largely independent of \(V_{DS} \)

Current Factor

\[\beta = \mu C_{ox} \frac{W}{L} \]
Sources of β Mismatch

- Mobility variations
 - E.g., due to dopant variations, random defects
- Oxide thickness variation
 - Usually very well-controlled
- Edge roughness

Distance Effect

Process Dependence

- A_{ox} tends to scale with technology
- Proportional to t_{ox}
- Also depends on doping level

Orientation Effects

- Si and transistors are not (perfectly) isotropic
- \rightarrow keep direction of current flow same!

0.18 μm CMOS
Current Matching

Voltage Matching

“Golden Rule” of Layout for Matching

- Everything you can think of might matter
- Even whether or not there is metal above the devices
- How to avoid systematic errors?

Common Centroid Layout

- Cancels linear gradients
- Required for moderate matching

Simulating Mismatch

- Brute force: Monte Carlo
- HSPICE “throws the dice”...