Offset Cancellation Overview

- Two main ideas/approaches

- Modulate and/or filter offset so that it is outside of signal band
 - CDS (auto-zeroing)
 - Chopping (synch. detection, DEM)

- Inject a DC signal that opposes the offset
 - Trimming
 - Often digitally controlled (especially for comparators)
Filtering/Modulating Offset

- **General idea:**
 - Put elements around the amplifier that treat offset differently than signal

- **CDS:**
 - Configure amplifier so that offset is (approx.) differentiated

- **Chopping:**
 - Modulate offset to frequencies beyond signal band, then filter it out

CDS #1: Output Offset Cancellation

- Relatively insensitive to switch errors
 - Storing amplified offset

- But, what happens if gain is large?

\[V_C = -AV_{os} \]

Phase 1:

\[V_{out} = A(V_{in} - V_{os}) - V_C = AV_{in} \]
CDS #2: Input Offset Cancellation

Multistage Cancellation

• Open switches left to right
 • Errors from \(S_1 \) … \(S_{N-1} \) cancelled by final stage

• Application: continuous time comparators
Auxiliary Amplifier Offset Cancellation

Aux. Amplifier Example

Aux. Amplifier Implementation

CDS and Flicker Noise

\[T = \frac{1}{f_n} \]
Flicker Noise Analysis

\[V_n(kT) = A \left(V_s(kT) + V_{1/f}(kT) - V_{1/f} \left(kT - \frac{T}{2} \right) \right) \]

Laplace Transform

Delay by \(t_d \) \(\rightarrow \) \(e^{-s t_d} \)

\[V_{eq}(s) = V_{1/f}(s) \left(1 - e^{-s T/2} \right) / H_c(s) \]

Flicker Noise Frequency Response

\[H_n(s) = 1 - e^{-s T/2} \]

\[|H_n(s)|_{\rightarrow j \omega} = \left(\left(1 - \cos \frac{\omega T}{2} \right)^2 + \left(\sin \frac{\omega T}{2} \right)^2 \right) = 1 - 2 \cos \frac{\omega T}{2} + \cos \frac{\omega T}{2} = 2 \left(1 - \cos \frac{\omega T}{2} \right) = 4 \sin^2 \frac{\omega T}{4} \]

\[|H_n(s)|_{\rightarrow j \omega} = 2 \sin \frac{\omega T}{4} = 2 \sin \frac{\pi f}{2 f_s} \]
Flicker Noise Spectrum

- Flicker noise is differentiated
 - As is thermal noise
- Noise removed at low freq.
 - But amplified at “high” freq.
- Noise above $f_s/2$ folds to baseband

Chopping
Nested Chopper Amplifier

- Inner chopper at high freq. to remove 1/f noise
- Outer chopper at low frequency to minimize “spiking” and remove residual offset from inner chopper.

Offset Trimming
Digital Trimming

Comparator Trimming
Trim Implementation Issues

- Infinite number of ways to introduce digitally controlled offset
 - People have tried just about all of them

- Key issues:
 - Power overhead
 - Circuit Imbalance
 - Effective resolution
 - Area overhead

Comparator Trim Schemes
Pre-Amp Trim