MOS Sample & Hold

Ideal Sampling

- Grab exact value of V_{in} when switch opens

Practical Sampling

- kT/C noise
- Limited bandwidth
- $R_{SW} = f(V_{in})$ → distortion
- Switch charge injection
- Clock jitter

Switch Resistance

- Finite switch R → finite bandwidth

Acquisition Bandwidth

- Assuming constant V_{in} and C starts at 0V:

\[V_{out} (t) = V_{in} (1 - e^{-t/\tau}) \]

- Leads to min. switch size for given bandwidth, resolution
 - Linear settling calc. – remember may only get $T/2$

- (Will C always start at 0V?)

Switch R_{on} Non-Linearity

Sampling Distortion

\[V_{out} = V_{in} \left(1 - e^{-t/(I_{SW}T_{SW})} \right) \]
Constant V_{GS} Sampling

- Switch overdrive voltage is independent of signal
- Error from finite R_{ON} is linear (to first order)

Constant V_{GS} Sampling Circuit

Complete Circuit

Charge Injection

- “Extra” charge dumped onto holding capacitor
- Channel charge has to go somewhere
- (Also get injection through C\text{in})
- Problems:
 - Offset
 - Distortion (error charge is function of V_{in})

Worst-Case Error Example

channel charge: $Q_{CH} = W_{C} (V_{in} - V_{CH})$

max pedestal error: $V_{CE} = V_{CH}$

$\Delta V = \frac{Q_{CH}}{C_{C}} = \frac{W_{C} C_{C}}{C_{C}} (V_{in} - V_{CH} - V_{CE})$

Example: $\Delta V = 10 \times 0.35 \times 5 \times (3.0 - 0.6) = 42$ mV

Dummy Switch

- Dummy switch is half width
- Depends on equal split between source and drain
- Is split equal?

Charge Injection Analysis

- Can perform more detailed, distributed analysis
 - Results depend on how fast switch is turned off

- Note that SPICE doesn’t do this (lumped model) – uses “XPART” parameter instead:
 - XPART = 0: Source 60%, Drain 40%
 - XPART = 0.5: equal split
 - XPART = 1: 100% Drain

Rejecting Injection Error

Bottom-Plate Sampling

- Turn off Φ_{1a} first
 - Injected charge is constant
 - Removed in differential output

- Switch Φ_{1b} opens later
 - C_2 disconnected
 → "zero" charge injected

- Is this useful?
 - $V_2 = 0V$...

Using Bottom-Plate Sampling