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Abstract  
 
 
The techniques of Instruction Level Parallelism (ILP) and pipeline have been used well to 
speed up the execution of instructions. The conditional branches are the critical factor to 
the effectiveness of a deep pipeline since the branch instructions can always break the 
flow of instructions through the pipeline and result in high execution cost. In order to 
achieve better CPU performance, many schemes of branch prediction have been utilized. 
These schemes sometimes can be categorized as program-based predictors vs. profile-
based predictors, or static vs. dynamic schemes. This paper focuses on the study of the 
dynamic branch predictors since the dynamic approach of branch prediction has been 
developed much more than the static approach of branch prediction. However, their 
performances always have new and interesting discoveries based on different benchmarks 
and architectures. I studied as much documentation as I could within my very limited 
time, and basically perform comparisons between different techniques of dynamic branch 
prediction, and organize my findings in this paper. 
 
 
 
 

Introduction 
 
 
Deep pipelining has been one of the more effective ways of improving processor 
performance. However, when higher degrees of instruction level parallelism have been 
applied, poorer performance of CPU might occur that is a result from the unresolved 
branches stalls. For conditional branches, the target instruction cannot be fetched until the 
target address has been calculated and the conditional branch has been resolved, whereas 
the unconditional branch is not resolved until the target address is calculated. Whether 
with conditional or unconditional branches, pipeline stalls could occur once the number 
of cycles is taken to resolve the branch. The performance of CPU decreases when the 
pipeline bubbles increase. To solve these problems, predicting the branch direction and 
providing effective availability of target addresses for execution are two good methods. 
This paper will mainly focus on the schemes of predicting branch directions. By 
predicting, pre-fetching, and initiating execution of the branch target address before the 
branch is resolved, the execution penalty will be substantially reduced. 
 



 
The static scheme of branch prediction is just predicting whether all branches are taken or 
not taken. This measurement of performance was reported by Lee and Smith [LS84]. The 
static strategy can provide up to 68 percent accuracy. In addition, Su and Zhou [SZ95] 
had more measurements on this strategy and concluded the static predictor has the worst 
performance. Nevertheless, according to the static scheme, dynamic branch prediction 
strategies have been studied extensively and proved that it has better performance than 
static strategy. All of the dynamic predictors have much better performance than static 
predictors and can at least achieve 90 percent accuracy as reported by McFarling [M93]. 
Dynamic schemes are different from the static ones in the sense that they use the run-time 
behavior of branches to make predictions. Hennessy and Patterson [HP96] introduced the 
two-bit prediction scheme. Moreover, Lee and Smith [LS84] proposed a better structure 
for it. McFarling [M93] referred to it as the bimodal branch prediction. Yeh and Patt 
{YP91] discussed these variations. The basic idea is to use 2-bit saturating up-down 
counters to collect history information that is then used to make predictions. Based on 
this concept, Yeh and Patt [YP91] developed the two-level adaptive branch prediction 
scheme. McFarling [M93] even explored more approaches to achieve better accuracy of 
branch prediction. Due to the fast progress of computer technology, Su and Zhou [SZ95] 
showed different aspects of performance analysis.  
 
The following sections first introduce those well-known schemes of dynamic branch 
predictors. After knowing the schemes, each branch prediction performance is then 
explicitly presented through the comparison chart. Their performance analyses are made 
in the same section. Before concluding this paper, I present different aspects of 
performances running on updated benchmarks. The conclusion can then be based more 
accurately on these various experimental data. 
 
 
 
 
 

Schemes of Dynamic Branch prediction 
 
 
Ø Two-bit Counter Branch Prediction Scheme 
 

The two-bit counter scheme always assigns a two-bit counter to the prediction cache 
buffer for each entry when each conditional branch occurs. The counter value is 
between 0 and 3. The counter is incremented when branch is predicted as taken; 
otherwise the counter is decremented if the prediction is not taken. Therefore, a 
prediction must be wrong twice before it is changed. The most significant bit 
determines the taken decision of prediction. Hennessy and Patterson [HP96] noted 
three-bit or higher counters do not make much significant than two-bit counter does. 
Lee and Smith [LS84] also refer to it as two-bit saturating up-down counters. The 
buffer is responsible for collecting history information, and applies the information to 



making the prediction. The state of branch’s entry in the buffer is therefore changed 
dynamically when the branch instructions are executed. The states in a two-bit 
prediction scheme are illustrated in the figure 1. 
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Figure 1. The states in a two-bit prediction scheme 
 
 

 
 

Ø Bimodal Branch Prediction Scheme 
 

Bimodal scheme takes advantage of two-bit counter branch behavior. The state of 
counters is stored in a counter table that records all the branches history. Each branch 
will then map to a unique counter. The branch history table is indexed by some bits of 
branch address. The mapping will not be any problem if the counter table is large 
enough for all branches, says more than 128K bytes; but for the smaller tables, the 
performance of accurate prediction can be impeded by sharing same counter with 
multiple branches. However, the smaller size of predictor still performs more 
effective than the two-bit scheme. The bimodal predictor structure is shown in figure 
2. 
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Figure 2. Bimodal Predictor Structure 

 
 
 

Ø Correlated Branch Prediction Scheme 
 

One of solutions for the problem of bimodal branch on the mapping collisions is the 
scheme of correlated prediction schemes. This correlated scheme uses two branch 
history tables, one is for keeping the recent branches history records and the other one 
is for keeping the state of branches in each entry contained 2-bit counter. They are so-
called history table and counter table. In other word, the correlated scheme takes 
advantage of relationship between different branch instructions that is certain 
repetitive branch pattern of several consecutive branches. The structure is illustrated 
in figure 3. The local, global, and global selection branch predictors are all considered 
as correlated branch prediction scheme.  
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Figure 3. Correlated Branch Prediction Scheme 

 
 
 
 
Ø Local Branch Prediction Scheme  
 
 

The local branch prediction scheme is one of correlated schemes.  Its first table 
records the history of branches by n-bit shift register. Pan, So and Rahmen [PSR92] 
used 2-bit shift register for exploiting the correlation between two consecutive 
branches. McFarling took advantage of this approach at more flexible way. In order 
to avoid the same history records, he expanded the number of bits according to the 
higher degree branch. For instance, the four times loops will be confused with the 3 
times loop if the number of bits is only limited at three. Both records would the same: 
(110). However, the expression will be very clear when the number of bit is expended 
up to four bits: (1110) and (0110). These history records are able to indicate the 
branch direction. The first table is indexed by the few bits of PC of branch. Yeh and 
Patt [YP93] considered per_address as the method of using the lower order bits of 
PC, whereas considered per_set as the method of using high or middle range bits of 
PC. Likewise, the second table, counter table, is indexed by the content of first table. 
Figure 4 shows the structure of local predictor scheme. 
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Figure 4. Local History Predictor Structure 
 
 
 
Ø Global Branch Prediction Scheme  
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The global branch prediction scheme takes advantage of other recent branches to 
make a prediction and make the history table as one single shift register, GR, to 
record the direction taken by the most recent n conditional branches. Because of the 
existing of GR, global prediction can be as accuracy as local does. Moreover, single 
global register substitutes the history table can cut down the overhead of excessive 
contention for history entries since most of branches are go to the same direction. On 
the other hand, global register has more difficulty to identify the current branch 
address than the local predictor does since global register does not keep all records of 
branch addresses. The structure of global branch prediction scheme illustrates in 
figure 5. 
 

        Counts 
 

 Taken    Prediction taken 
 
 

   
  

 
     

 
      Taken 
 

 
 
 
 

Figure 5. Global Predictor Structure 
 
 
Ø Global Selection Branch Prediction Scheme 
 

This scheme is an improved version of global scheme by taking advantage of both 
branch address and global history since global prediction is bad at identifying the 
current branch than the branch address does. This concept was revealed by Pan, So 
and Rahmeh [PRS92]. The key idea for the global predictor with index selection 
scheme is to concatenate the bits of global history and branch address. McFarling 
[M93] refer to it as gselect.  This approach is shown in figure 6 and table 1. 
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Figure 6.  Global History Predictor with Index Selection 
 
 
 

Branch Address Global History Gselect 4/4 
  (AND) 

0000 0000 0000 0001 0000 0001 
0000 0000  0000 0000 0000 0000 
1111 1111 0000 0000 1111 0000 
1111 1111 1000 0000 1111 0000 

 
Table 1. The Bits Concatenation on Gselect Scheme 

     
Ø Global Sharing Branch Prediction Scheme 
 

Even though gselect predictor can solve the problem, to some extend, that global 
predictor has hard time to identify branch address well, global selection scheme 
sometimes still can not distinguish the branches well as the table 1 shows. Global 
sharing, or gshare as McFarling refereed [M93], predictor extends the strategy of 
gselect branch prediction scheme. Two parts were modified in gshare scheme from 
the gselect branch prediction scheme. The first change is the way of combining 
branch address bits and history bits. Gshare predictor uses exclusive OR (XOR) to 
combine those two types of bits instead of using concatenation. This change is able to 
make the index more explicitly as table 2 shows. The second significant change is to 
allow more branch address bits to be applied in this combination so that gshare 
predictor can identify the current branch address easily. The structure of gshare 
predictor is similar to gselect predictor except the combining strategy. The structure 
of global sharing branch predictor scheme is shown in figure 7. 
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Branch 
Address 

Global History Gselect 4/4 
  (AND) 

Gshare 8/8 
  (XOR) 

0000 0000 0000 0001 0000 0001 0000 0001 
0000 0000  0000 0000 0000 0000 0000 0000 
1111 1111 0000 0000 1111 0000 1111 1111 
1111 1111 1000 0000 1111 0000 0111 1111 

 
Table 2. The bits XOR on the Gshare predictor 

 
 
 

  Counts 
 
        Taken     Prediction 
 
 
    m 
     
 
 
      n      m (XOR) n 
  

 
Figure 7. Global History with Index Sharing Scheme 

 
 

       
 

 
Ø Selective Branch Predictors Scheme 
 

As we mentioned before, one predictor performs excellent under some particular 
situations, and the others will perform well at other kind of situations. Such as 
bimodal predictor always performs well when the predictor size is small, whereas 
local predictor can not see the significant improvement until the counter table grows 
to some sizes. Based on this observation, McFarling [M93] proposed a combining 
branch prediction scheme to take advantage of different predictors at vary conditions. 
The technique is to use two-bit up/down saturating counters to keep track of which 
predictor is more accurate for the branches that share that counter. The structure is 
shown in figure 8. The performance and its comparison will be discussed in the later 
section. On the other hand, the implementation cost of the selective branch predictor 
is three times of others since two predictors and one selector are used as noted by Su 
and Zhou [SZ95]. 
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Figure 8. The Structure of Selective Brach Predictor Scheme 

 

 
 
 
The Schemes Performance and Analysis 
 
By the comparison of predictor performance we can analyze their performances 
explicitly.  The measurements for each predictor are based on the SPEC’89 benchmarks 
and the executions were traced on a DEC station 5000 using the pixie tracing facility. 
After introduced predictors’ individual performance, we will see how the different 
architecture impacts those branch predictors as experimented by Su and Zhou [SZ95]. 
The predictors were tested on the SPARC system 10 with two SuperSparc/60 V8 
microprocessors and the data were obtained by Shade tracer version 5.15. The 
measurements were based on the benchmarks of SPECint95-beta and SPECfp92. 
 
 
 

v The predictors performance on SPEC’89 
 
Ø Bimodal predictor verses Local predictor 

 
As the figure 9 shows, the prediction accuracy always increases with predictors’ 
size since the counters of bimodal predictor are shared by fewer branches as the 



number of counters increases. However, the accuracy of bimodal predictor can 
not compete with local predictor once the predictor size greater than 128K bytes 
and just saturates at 93.5 percent once each branch maps to a unique counter.  
 

 
Figure 9. Local Predictor verses Bimodal Predictor 

 
 
 

Ø Global predictor verses Bimodal and Local predictors 
 

Here is an interesting finding that global predictor is significantly less effective 
than the local predictor even though global predictor improves the disadvantage 
of accessing two tables. This is because global history register can not distinguish 
different branches as effective as branches address does. However, global history 
register is able to identify current branch easily once the predictor size is 
sufficiently large. This is the reason why global predictor performs better than 
bimodal does when the predictor size is greater than 1K bytes. 
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Figure 10. Global Predictor verses Local and Bimodal Predictors 

 
 

 
Ø Gselect predictor verses Bimodal, Local and Global predictors 

 
When gselect predictor size sufficiently large to hold enough address bit to 
identify current branch, the gselect has significant better performance than 
bimodal predictor does even though they were paralleled when the predictor size 
is still small. Based on this advantage, gselect predictor can outperforms any other 
predictors. However, its performance is very close to local predictor since local 
predictor identifies the current branch solely by the address bits. Nevertheless, 
gselect still has two advantages to outperform local predictor: the storage space 
required for global schemes is negligible and gselect only requires single array 
access whereas local predictor requires two array accesses in sequence.  

 
 
 

Figure 11. Gselect predictor verses Bimodal, Local and Global Predictors 
 
 

 
Ø Gshare predictor verses Global and Gselect predictors 

 
Due to the lack of address bits to identify current branch, the global predictor is 
much under performs than the other global predictors. On the other hand, gshare 
can not have better performance until the predictor grows large enough to 
eliminate the contention for counters between different branches. 
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Figure 12. Gshare Predictor verses Other Predictors 
 

 
 

 
Ø Combining predictor verses Bimodal and Gselect predictors 

 
The combining predictor has slightly better performance than gselect predictor 
does since the combining predictor selection array cost is amortized over more 
predictor counters. The 1K bytes combining predictor has nearly the same 
performance as the 16K bytes gselect predictor does. 
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Figure 13. Selective Predictor verses All Other Predictors 
 
 
v The predictors performance on SPECint95-beta and 

SPECfp92 
 

In this section, we are going to see different aspects of predictors at different analysis. 
The analysis focuses on evaluating the performances of vary predictors on each 
program of benchmarks. Except the most of predictors we introduced, the comparison 
also includes the static and common-correlated branch predictors. The analysis also 
examines the effect of context switching and the effect of varying the buffer size on 
branch prediction. The programs of benchmarks are eight integer programs from 
SPECint95-beta, and thirteen floating-point programs from SPECfp92. 
 
Ø Branches analysis on benchmark programs 
Figure 14 shows the frequencies of conditional branches on each program starting 
with eight integer programs. The blue lines represent integer programs, red lines 
represent floating point programs, the pink line represents taken instructions, black 
line and green line represent average branch and taken respectively.  
 

 
Figure 14. The Frequency of conditional Branches 

 
 



The floating point programs have lower percentage of conditional branches than 
integer programs but have higher percentage of taken conditional branches as shows 
in figure 14 and figure 15.  This is because those floating point programs have many 
long looping structures. On the other hand, an integer program, numi, has lower 
frequency of conditional branches than the average and highest percentage, almost 
reaches the average frequency, of conditional branches that are taken among integer 
programs. This is because numi is the only one written in Fortran, the others are 
written in C, as well has the highest floating point instruction percentage, 10.2%.  
 

 
Figure 15.  Percentage of conditional branches that are taken 

 
 
 
Ø Schemes analysis on benchmark programs 
 

Figure 16 shows all seven predictors’ performance over twenty-one benchmark 
programs. Almost every predictor has the consistent performance on all programs. 
The differences between their prediction accuracy are somewhat predictable. This 
suggests that the branch behavior of a program is the most important parameter in 
determining the prediction accuracy of each scheme.  



 

Figure 16. Seven Schemes performance on 21 benchmark programs 
 
 

 
We can see the strong correlation between the branches taken and accuracy 
through the comparison of figure 15 and 16. The interesting finding between these 
two figures is that the higher the taken frequency the higher the prediction 
accuracy. This suggest that floating point programs are easier to predict the 
branch than the integer programs do in terms of the integer programs’ low 
frequency of branches taken. An integer program, go, is the only exception from 
this correlation since it features many small loops and lots of control flows. This 
feature causes all the branch predictors that take advantage of long looping 
structures to perform poorly.  
 
The table 3 summaries the relative performance of the seven schemes. The local 
predictor has the best performance in floating point benchmark programs since 
floating point programs have many looping structures that local predictor can take 
advantage of history register to keep tracking each branch address and reduce the 
interference among different branches. However, the integer programs contains a 
lot of if-then-else statements that degrades the performance of local predictor, 
whereas a scheme with a single array access, gselect, performs better than the 
local predictor does by taking advantage of the control flow statements. 
 
 
 
 
 



Benchmarks Schemes ordered by performance (from worst to best) 
 bimodal  gshare  correlation local  gselect  selective  INT  
 89.8%  90.3%  90.8%  91.3%  91.8%  92.7%  
 bimodal  correlation  gshare  gselect  selective local  

FP  
 94.4%  94.7%  94.7%  95.3%  95.5%  95.6%  

 bimodal  gshare  correlation local  gselect  selective  ALL  
 92.6%  93.0%  93.2%  93.9%  93.9%  94.4%  

 
Table 3. Performance Summary of Schemes 

 
 
Table 3 and figure 16 indicate two differences from other studies. The first 
differences is that gshare predictor didn’t make significant improvement of 
performance by the feature of reducing aliases. The second difference is stated as 
follow: with the same size of other branch prediction tables, the combining 
(selective) predictor can still perform better than other schemes. On the other 
hand, selective predictor still is the winner over other predictors in this 
experiment. This indicates combining predictors as another kind of new predictor 
can get the best accuracy of branch prediction. 
 
 

 
 
Conclusion Remark 
 
Ø Identifying current branch plays the key role to make the branch 

predictor performance more effective. 
I notice that the local predictor always performs better even though it has the 
disadvantage of having to access two table arrays in terms of the all global 
version predictors. Using more branch address bits does increase the predictor 
performance. None of the correlated predictors can outperform the local 
predictors by much unless the gselect predictor adapts more branch address 
bits.  
 

 
Ø Current predictor can perform better by just combining the other 

predictor. 
Combining different predictors as a new predictor can impressively improve 
the accuracy of branch prediction. The combined predictors using local and 
global branch information reach a prediction accuracy of 98.1% as compared 
to 97.1% for the previously most accurate known scheme. The experiment 



indicates selective scheme achieves the least miss-predict rate with the same 
size of branch prediction buffer.  
 

 
Ø Tracing less tested programs or a small part of a program may 

provide misleading data and imprecise conclusion. 
By importing different benchmarks to run based on a bigger portion of a 
program and other programs proves selective predictor can still outperform 
over other schemes using the same size of branch prediction tables.  

 
 
Ø Different structures of branch prediction schemes perform well on 

different branch structures.  
Local scheme of branch prediction performs especially well on the branch 
structure with many loops in a program since the register history table helps 
local predictor to distinguish the branches. However, its performance can not 
compete with the gselect predictor when the branch structure in a program 
contains more control flow statements since accessing the two table arrays 
degrades performance when the branch structure just consists of if-then-else 
statements.  
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