
The Schemes and Performances of
Dynamic Branch predictors

Chih-Cheng Cheng

Abstract

The techniques of Instruction Level Parallelism (ILP) and pipeline have been used well to
speed up the execution of instructions. The conditional branches are the critical factor to
the effectiveness of a deep pipeline since the branch instructions can always break the
flow of instructions through the pipeline and result in high execution cost. In order to
achieve better CPU performance, many schemes of branch prediction have been utilized.
These schemes sometimes can be categorized as program-based predictors vs. profile-
based predictors, or static vs. dynamic schemes. This paper focuses on the study of the
dynamic branch predictors since the dynamic approach of branch prediction has been
developed much more than the static approach of branch prediction. However, their
performances always have new and interesting discoveries based on different benchmarks
and architectures. I studied as much documentation as I could within my very limited
time, and basically perform comparisons between different techniques of dynamic branch
prediction, and organize my findings in this paper.

Introduction

Deep pipelining has been one of the more effective ways of improving processor
performance. However, when higher degrees of instruction level parallelism have been
applied, poorer performance of CPU might occur that is a result from the unresolved
branches stalls. For conditional branches, the target instruction cannot be fetched until the
target address has been calculated and the conditional branch has been resolved, whereas
the unconditional branch is not resolved until the target address is calculated. Whether
with conditional or unconditional branches, pipeline stalls could occur once the number
of cycles is taken to resolve the branch. The performance of CPU decreases when the
pipeline bubbles increase. To solve these problems, predicting the branch direction and
providing effective availability of target addresses for execution are two good methods.
This paper will mainly focus on the schemes of predicting branch directions. By
predicting, pre-fetching, and initiating execution of the branch target address before the
branch is resolved, the execution penalty will be substantially reduced.

The static scheme of branch prediction is just predicting whether all branches are taken or
not taken. This measurement of performance was reported by Lee and Smith [LS84]. The
static strategy can provide up to 68 percent accuracy. In addition, Su and Zhou [SZ95]
had more measurements on this strategy and concluded the static predictor has the worst
performance. Nevertheless, according to the static scheme, dynamic branch prediction
strategies have been studied extensively and proved that it has better performance than
static strategy. All of the dynamic predictors have much better performance than static
predictors and can at least achieve 90 percent accuracy as reported by McFarling [M93].
Dynamic schemes are different from the static ones in the sense that they use the run-time
behavior of branches to make predictions. Hennessy and Patterson [HP96] introduced the
two-bit prediction scheme. Moreover, Lee and Smith [LS84] proposed a better structure
for it. McFarling [M93] referred to it as the bimodal branch prediction. Yeh and Patt
{YP91] discussed these variations. The basic idea is to use 2-bit saturating up-down
counters to collect history information that is then used to make predictions. Based on
this concept, Yeh and Patt [YP91] developed the two-level adaptive branch prediction
scheme. McFarling [M93] even explored more approaches to achieve better accuracy of
branch prediction. Due to the fast progress of computer technology, Su and Zhou [SZ95]
showed different aspects of performance analysis.

The following sections first introduce those well-known schemes of dynamic branch
predictors. After knowing the schemes, each branch prediction performance is then
explicitly presented through the comparison chart. Their performance analyses are made
in the same section. Before concluding this paper, I present different aspects of
performances running on updated benchmarks. The conclusion can then be based more
accurately on these various experimental data.

Schemes of Dynamic Branch prediction

Ø Two-bit Counter Branch Prediction Scheme

The two-bit counter scheme always assigns a two-bit counter to the prediction cache
buffer for each entry when each conditional branch occurs. The counter value is
between 0 and 3. The counter is incremented when branch is predicted as taken;
otherwise the counter is decremented if the prediction is not taken. Therefore, a
prediction must be wrong twice before it is changed. The most significant bit
determines the taken decision of prediction. Hennessy and Patterson [HP96] noted
three-bit or higher counters do not make much significant than two-bit counter does.
Lee and Smith [LS84] also refer to it as two-bit saturating up-down counters. The
buffer is responsible for collecting history information, and applies the information to

making the prediction. The state of branch’s entry in the buffer is therefore changed
dynamically when the branch instructions are executed. The states in a two-bit
prediction scheme are illustrated in the figure 1.

 Taken
 Not taken

 Taken
 Taken Not taken
 Not taken

Taken
 Not taken

Figure 1. The states in a two-bit prediction scheme

Ø Bimodal Branch Prediction Scheme

Bimodal scheme takes advantage of two-bit counter branch behavior. The state of
counters is stored in a counter table that records all the branches history. Each branch
will then map to a unique counter. The branch history table is indexed by some bits of
branch address. The mapping will not be any problem if the counter table is large
enough for all branches, says more than 128K bytes; but for the smaller tables, the
performance of accurate prediction can be impeded by sharing same counter with
multiple branches. However, the smaller size of predictor still performs more
effective than the two-bit scheme. The bimodal predictor structure is shown in figure
2.

Predict taken Predict taken

Predict not
taken Predict not

taken

 Counts

 Taken Prediction taken

 Taken

 n-bit (for indexing)

Figure 2. Bimodal Predictor Structure

Ø Correlated Branch Prediction Scheme

One of solutions for the problem of bimodal branch on the mapping collisions is the
scheme of correlated prediction schemes. This correlated scheme uses two branch
history tables, one is for keeping the recent branches history records and the other one
is for keeping the state of branches in each entry contained 2-bit counter. They are so-
called history table and counter table. In other word, the correlated scheme takes
advantage of relationship between different branch instructions that is certain
repetitive branch pattern of several consecutive branches. The structure is illustrated
in figure 3. The local, global, and global selection branch predictors are all considered
as correlated branch prediction scheme.

 PC

Figure 3. Correlated Branch Prediction Scheme

Ø Local Branch Prediction Scheme

The local branch prediction scheme is one of correlated schemes. Its first table
records the history of branches by n-bit shift register. Pan, So and Rahmen [PSR92]
used 2-bit shift register for exploiting the correlation between two consecutive
branches. McFarling took advantage of this approach at more flexible way. In order
to avoid the same history records, he expanded the number of bits according to the
higher degree branch. For instance, the four times loops will be confused with the 3
times loop if the number of bits is only limited at three. Both records would the same:
(110). However, the expression will be very clear when the number of bit is expended
up to four bits: (1110) and (0110). These history records are able to indicate the
branch direction. The first table is indexed by the few bits of PC of branch. Yeh and
Patt [YP93] considered per_address as the method of using the lower order bits of
PC, whereas considered per_set as the method of using high or middle range bits of
PC. Likewise, the second table, counter table, is indexed by the content of first table.
Figure 4 shows the structure of local predictor scheme.

 History Counts

 Taken Prediction

Figure 4. Local History Predictor Structure

Ø Global Branch Prediction Scheme

1110

 PC

The global branch prediction scheme takes advantage of other recent branches to
make a prediction and make the history table as one single shift register, GR, to
record the direction taken by the most recent n conditional branches. Because of the
existing of GR, global prediction can be as accuracy as local does. Moreover, single
global register substitutes the history table can cut down the overhead of excessive
contention for history entries since most of branches are go to the same direction. On
the other hand, global register has more difficulty to identify the current branch
address than the local predictor does since global register does not keep all records of
branch addresses. The structure of global branch prediction scheme illustrates in
figure 5.

 Counts

 Taken Prediction taken

 Taken

Figure 5. Global Predictor Structure

Ø Global Selection Branch Prediction Scheme

This scheme is an improved version of global scheme by taking advantage of both
branch address and global history since global prediction is bad at identifying the
current branch than the branch address does. This concept was revealed by Pan, So
and Rahmeh [PRS92]. The key idea for the global predictor with index selection
scheme is to concatenate the bits of global history and branch address. McFarling
[M93] refer to it as gselect. This approach is shown in figure 6 and table 1.

 GR

 Counts

 Taken Prediction

 n

 Taken
m n+m

Figure 6. Global History Predictor with Index Selection

Branch Address Global History Gselect 4/4
 (AND)

0000 0000 0000 0001 0000 0001
0000 0000 0000 0000 0000 0000
1111 1111 0000 0000 1111 0000
1111 1111 1000 0000 1111 0000

Table 1. The Bits Concatenation on Gselect Scheme

Ø Global Sharing Branch Prediction Scheme

Even though gselect predictor can solve the problem, to some extend, that global
predictor has hard time to identify branch address well, global selection scheme
sometimes still can not distinguish the branches well as the table 1 shows. Global
sharing, or gshare as McFarling refereed [M93], predictor extends the strategy of
gselect branch prediction scheme. Two parts were modified in gshare scheme from
the gselect branch prediction scheme. The first change is the way of combining
branch address bits and history bits. Gshare predictor uses exclusive OR (XOR) to
combine those two types of bits instead of using concatenation. This change is able to
make the index more explicitly as table 2 shows. The second significant change is to
allow more branch address bits to be applied in this combination so that gshare
predictor can identify the current branch address easily. The structure of gshare
predictor is similar to gselect predictor except the combining strategy. The structure
of global sharing branch predictor scheme is shown in figure 7.

 PC

 GR

Branch
Address

Global History Gselect 4/4
 (AND)

Gshare 8/8
 (XOR)

0000 0000 0000 0001 0000 0001 0000 0001
0000 0000 0000 0000 0000 0000 0000 0000
1111 1111 0000 0000 1111 0000 1111 1111
1111 1111 1000 0000 1111 0000 0111 1111

Table 2. The bits XOR on the Gshare predictor

 Counts

 Taken Prediction

 m

 n m (XOR) n

Figure 7. Global History with Index Sharing Scheme

Ø Selective Branch Predictors Scheme

As we mentioned before, one predictor performs excellent under some particular
situations, and the others will perform well at other kind of situations. Such as
bimodal predictor always performs well when the predictor size is small, whereas
local predictor can not see the significant improvement until the counter table grows
to some sizes. Based on this observation, McFarling [M93] proposed a combining
branch prediction scheme to take advantage of different predictors at vary conditions.
The technique is to use two-bit up/down saturating counters to keep track of which
predictor is more accurate for the branches that share that counter. The structure is
shown in figure 8. The performance and its comparison will be discussed in the later
section. On the other hand, the implementation cost of the selective branch predictor
is three times of others since two predictors and one selector are used as noted by Su
and Zhou [SZ95].

 PC

 GR

XOR

Figure 8. The Structure of Selective Brach Predictor Scheme

The Schemes Performance and Analysis

By the comparison of predictor performance we can analyze their performances
explicitly. The measurements for each predictor are based on the SPEC’89 benchmarks
and the executions were traced on a DEC station 5000 using the pixie tracing facility.
After introduced predictors’ individual performance, we will see how the different
architecture impacts those branch predictors as experimented by Su and Zhou [SZ95].
The predictors were tested on the SPARC system 10 with two SuperSparc/60 V8
microprocessors and the data were obtained by Shade tracer version 5.15. The
measurements were based on the benchmarks of SPECint95-beta and SPECfp92.

v The predictors performance on SPEC’89

Ø Bimodal predictor verses Local predictor

As the figure 9 shows, the prediction accuracy always increases with predictors’
size since the counters of bimodal predictor are shared by fewer branches as the

number of counters increases. However, the accuracy of bimodal predictor can
not compete with local predictor once the predictor size greater than 128K bytes
and just saturates at 93.5 percent once each branch maps to a unique counter.

Figure 9. Local Predictor verses Bimodal Predictor

Ø Global predictor verses Bimodal and Local predictors

Here is an interesting finding that global predictor is significantly less effective
than the local predictor even though global predictor improves the disadvantage
of accessing two tables. This is because global history register can not distinguish
different branches as effective as branches address does. However, global history
register is able to identify current branch easily once the predictor size is
sufficiently large. This is the reason why global predictor performs better than
bimodal does when the predictor size is greater than 1K bytes.

82
84
86
88
90
92
94
96
98

32 64 12
8

25
6

51
2

10
00

20
00

40
00

80
00

16
00

0

32
00

0

64
00

0

Predictor Size (Bytes)

C
on

di
tio

na
l B

ra
nc

h
P

re
di

ct
io

n
A

cc
ur

ac
y

(%
)

bimodal

local

88
89
90
91
92
93
94
95
96
97
98

32 64 12
8

25
6

51
2

10
00

20
00

40
00

80
00

16
00

0

32
00

0

64
00

0

Predictor size (bytes)

co
nd

iti
on

al
 b

ra
nc

h
pr

ed
ic

tio
n

ac
cu

ra
cy

 (%
)

bimodal
local

global

Figure 10. Global Predictor verses Local and Bimodal Predictors

Ø Gselect predictor verses Bimodal, Local and Global predictors

When gselect predictor size sufficiently large to hold enough address bit to
identify current branch, the gselect has significant better performance than
bimodal predictor does even though they were paralleled when the predictor size
is still small. Based on this advantage, gselect predictor can outperforms any other
predictors. However, its performance is very close to local predictor since local
predictor identifies the current branch solely by the address bits. Nevertheless,
gselect still has two advantages to outperform local predictor: the storage space
required for global schemes is negligible and gselect only requires single array
access whereas local predictor requires two array accesses in sequence.

Figure 11. Gselect predictor verses Bimodal, Local and Global Predictors

Ø Gshare predictor verses Global and Gselect predictors

Due to the lack of address bits to identify current branch, the global predictor is
much under performs than the other global predictors. On the other hand, gshare
can not have better performance until the predictor grows large enough to
eliminate the contention for counters between different branches.

88
89
90
91
92
93
94
95
96
97
98

32 64 12
8

25
6

51
2

10
00

20
00

40
00

80
00

16
00

0

32
00

0

64
00

0

Predictor Size (bytes)

C
on

di
tio

na
l B

ra
nc

h
P

re
di

ct
io

n
A

cc
ur

ac
y

(%
)

bimodal
local
global
gselect

Figure 12. Gshare Predictor verses Other Predictors

Ø Combining predictor verses Bimodal and Gselect predictors

The combining predictor has slightly better performance than gselect predictor
does since the combining predictor selection array cost is amortized over more
predictor counters. The 1K bytes combining predictor has nearly the same
performance as the 16K bytes gselect predictor does.

88
90
92

94
96
98

32 12
8

51
2

20
00

80
00

32
00

0

Predictor s ize (bytes)

C
on

di
tio

na
l b

ra
nc

h
pr

ed
ic

tio
n

ac
cu

ra
cy

(%

) bimodal
loca l
g loba l
gselect
gshare

88

90

92

94

96

98

32 12
8

51
2

20
00

80
00

32
00

0
Predictor sizes (bytes)

C
on

di
tio

na
l b

ra
nc

h
pr

ed
ic

tio
n

ac
cu

ra
cy

 (%
)

bimodal
local
global
gselect
gshare
selective

Figure 13. Selective Predictor verses All Other Predictors

v The predictors performance on SPECint95-beta and

SPECfp92

In this section, we are going to see different aspects of predictors at different analysis.
The analysis focuses on evaluating the performances of vary predictors on each
program of benchmarks. Except the most of predictors we introduced, the comparison
also includes the static and common-correlated branch predictors. The analysis also
examines the effect of context switching and the effect of varying the buffer size on
branch prediction. The programs of benchmarks are eight integer programs from
SPECint95-beta, and thirteen floating-point programs from SPECfp92.

Ø Branches analysis on benchmark programs
Figure 14 shows the frequencies of conditional branches on each program starting
with eight integer programs. The blue lines represent integer programs, red lines
represent floating point programs, the pink line represents taken instructions, black
line and green line represent average branch and taken respectively.

Figure 14. The Frequency of conditional Branches

The floating point programs have lower percentage of conditional branches than
integer programs but have higher percentage of taken conditional branches as shows
in figure 14 and figure 15. This is because those floating point programs have many
long looping structures. On the other hand, an integer program, numi, has lower
frequency of conditional branches than the average and highest percentage, almost
reaches the average frequency, of conditional branches that are taken among integer
programs. This is because numi is the only one written in Fortran, the others are
written in C, as well has the highest floating point instruction percentage, 10.2%.

Figure 15. Percentage of conditional branches that are taken

Ø Schemes analysis on benchmark programs

Figure 16 shows all seven predictors’ performance over twenty-one benchmark
programs. Almost every predictor has the consistent performance on all programs.
The differences between their prediction accuracy are somewhat predictable. This
suggests that the branch behavior of a program is the most important parameter in
determining the prediction accuracy of each scheme.

Figure 16. Seven Schemes performance on 21 benchmark programs

We can see the strong correlation between the branches taken and accuracy
through the comparison of figure 15 and 16. The interesting finding between these
two figures is that the higher the taken frequency the higher the prediction
accuracy. This suggest that floating point programs are easier to predict the
branch than the integer programs do in terms of the integer programs’ low
frequency of branches taken. An integer program, go, is the only exception from
this correlation since it features many small loops and lots of control flows. This
feature causes all the branch predictors that take advantage of long looping
structures to perform poorly.

The table 3 summaries the relative performance of the seven schemes. The local
predictor has the best performance in floating point benchmark programs since
floating point programs have many looping structures that local predictor can take
advantage of history register to keep tracking each branch address and reduce the
interference among different branches. However, the integer programs contains a
lot of if-then-else statements that degrades the performance of local predictor,
whereas a scheme with a single array access, gselect, performs better than the
local predictor does by taking advantage of the control flow statements.

Benchmarks Schemes ordered by performance (from worst to best)
 bimodal gshare correlation local gselect selective INT
 89.8% 90.3% 90.8% 91.3% 91.8% 92.7%
 bimodal correlation gshare gselect selective local

FP
 94.4% 94.7% 94.7% 95.3% 95.5% 95.6%

 bimodal gshare correlation local gselect selective ALL
 92.6% 93.0% 93.2% 93.9% 93.9% 94.4%

Table 3. Performance Summary of Schemes

Table 3 and figure 16 indicate two differences from other studies. The first
differences is that gshare predictor didn’t make significant improvement of
performance by the feature of reducing aliases. The second difference is stated as
follow: with the same size of other branch prediction tables, the combining
(selective) predictor can still perform better than other schemes. On the other
hand, selective predictor still is the winner over other predictors in this
experiment. This indicates combining predictors as another kind of new predictor
can get the best accuracy of branch prediction.

Conclusion Remark

Ø Identifying current branch plays the key role to make the branch

predictor performance more effective.
I notice that the local predictor always performs better even though it has the
disadvantage of having to access two table arrays in terms of the all global
version predictors. Using more branch address bits does increase the predictor
performance. None of the correlated predictors can outperform the local
predictors by much unless the gselect predictor adapts more branch address
bits.

Ø Current predictor can perform better by just combining the other

predictor.
Combining different predictors as a new predictor can impressively improve
the accuracy of branch prediction. The combined predictors using local and
global branch information reach a prediction accuracy of 98.1% as compared
to 97.1% for the previously most accurate known scheme. The experiment

indicates selective scheme achieves the least miss-predict rate with the same
size of branch prediction buffer.

Ø Tracing less tested programs or a small part of a program may

provide misleading data and imprecise conclusion.
By importing different benchmarks to run based on a bigger portion of a
program and other programs proves selective predictor can still outperform
over other schemes using the same size of branch prediction tables.

Ø Different structures of branch prediction schemes perform well on

different branch structures.
Local scheme of branch prediction performs especially well on the branch
structure with many loops in a program since the register history table helps
local predictor to distinguish the branches. However, its performance can not
compete with the gselect predictor when the branch structure in a program
contains more control flow statements since accessing the two table arrays
degrades performance when the branch structure just consists of if-then-else
statements.

References

[BL93] T. Ball and J. R. Larus. “Branch prediction for free. In Proceedings of the
ACM SIGPLAN ’93 Conference on Programming Language Design and
Implementation,” Albuquerque, NM, 1993.

[FF92] J. A. Fisher and S. M. Freudenberger. “Predicting conditional branch
directions from previous runs of a program,” In Proceedings of ASPLOS V, pages
85-95, Boston, MA, October 1992.

[HP96] J. Hennessy and D. Patterson, "Computer Architecture: A Quantitative
Approach, 2nd Edition," Morgan Kaufmann Publishers, Inc., 1996.

[JW89] N. P. Jouppi and D. W. Wall. “Available instruction-level parallelism for
superscalar and superpipelined machines.” In Proceedings of ASPLOS III, pages 272-
282, Boston, MA, April 1989.

[LS84] J. Lee and A. Smith, "Branch Prediction Strategies and Branch Target
Buffer Design", Computer 17:1 Jan. 1984.

[M93] S. McFarling, " Combining Branch Predictors," TR, Digital Western

Research Laboratory,Jun. 1993

[MH86] S. MaFarling and J. Hennessy "Reducing the Cost of Branches", Proc. of
13th Annual Intl. Symp. on Computer Architecture, Jun. 1986.

[PSR92] S. Pan, K. So, and J. Rahmeh, "Improving the Accuracy of Dynamic
Branch Prediction Using Branch Correlation," Proc. 5th Annual Intl. Conf. on
Architectural Support for Prog. Lang. and Operating Systems, Oct. 1992.

[SZ95] Zhendong Su and Min Zhou, “A Comparative Analysis of Branch
Prediction Schemes,” University of California at Berkeley, Computer Architecture
Project, 1995 .

[YCS96] Gloy C. Young J. B. Chen and M. D. Smith, “An Analysis of Dynamic
Branch Prediction Schemes on System Workloads,” Proc. 23rd Annual Intl. Symp. on
Computer Architecture, pp. 12--21, May 1996.

[YP91] T. Yeh and Y. Patt, "Two-Level Adaptive Training Branch Prediction,"
Proc. 24th Annual ACM/IEEE Intl. Symp. and Workshop on Microarchitecture, Nov.
1991.

[YS94] C. Young and M. Smith, " Improving the Accuracy of Static Branch
Prediction Using Branch Correlation", Proc. 6th Intl. Conf. on Architectural Support
for Prog. Lang. and Operating Systems, October 1994.

[YS95] C. Young and M. Smith, " A Comparative Analysis of Schemes for
Correlated Branch Prediction", Proc. 22nd Annual Intl. Symp. on Computer
Architecture, June 1995.

