1) Given the circuit in Figure 1, $R_1=R_2=10 \text{ M}\Omega$, $V_{dd}=1.8 \text{V}$ and $W/L=1/1$.
 a) Sketch V_{out} and I_d of the transistor as V_{in} varies from 0 to V_{dd}. Label the breakpoints, end points of the curve and indicate operation region of the transistor. (Hint: do the necessary approximation)
 b) Find out dc voltage V_{in} such that V_{out} is $V_{dd}/2$. And calculate the small signal parameters, g_m, R_{out}, R_{in} at this operation point.
 c) Use HSPICE and the following device model to verify your hand calculations for a) and b). Compare your results with SPICE simulations. Print out the results and SPICE deck. (Note: $\phi_f=0.3 \text{ V}=\phi/2$)

```
.model nch nmos LEVEL=1 TOX=25 VTO=0.4 KP=100.0e-6 LAMBDA=0 +GAMMA=0.01 PHI=0.6
```

![Figure 1](image-url)