1) Given the circuit in Figure 1, assume M1 and M2 are transistors with the same parameters: K', W/L, r_o, $\gamma=0$, V_{to}. A current source I_{ss} with output impedance R_{ss} drives the differential pair. Input CM voltage is V_{ic} and supply voltage is V_{dd}. Answer the following questions in terms of these parameters and resistor values given in the figure.

a) Calculating the DC operation points of all the nodes. (Assume $R_{ss} >> R_2$, $1/gm$ of M1 and M2, both transistors in saturation)

b) What is the maximum V_{ic} such that M1 and M2 stay in saturation region?

c) What is the small-signal voltage gain $(V_{o1}-V_{o2})/(V_{i1}-V_{i2})$? (Assume M1, M2 in saturation)

d) If the input CM changes from V_{ic} to $(V_{ic}+\Delta V)$, what happens to output voltages? Quantify it. (Assume M1, M2 in saturation, $\Delta V<<V_{ic}$)