Administrative Stuff
- Project phase 1 due on Thursday
 - Report template posted on the web
- Midterm 2 next Tuesday

Dynamic CMOS
- In static circuits, at every point in time (except when switching) the output is connected to either GND or V_{DD} via a low resistance path.
 - fan-in of n requires $2n$ (n N-type + n P-type) devices
- Dynamic circuits rely on the temporary storage of signal values on the capacitance of high impedance nodes.
 - only requires $n + 2$ ($n+1$ N-type + 1 P-type) transistors

Class Material
- Last lecture
 - Pass-transistor logic
- Today’s lecture
 - Dynamic logic
- Reading
 - Chapter 6

Dynamic Gate
Two phase operation
- Precharge (CLK = 0)
- Evaluate (CLK = 1)
Dynamic Gate

Two phase operation
- **Precharge** (Clk = 0)
- **Evaluate** (Clk = 1)

Conditions on Output
- Once the output of a dynamic gate is discharged, it cannot be charged again until the next precharge operation.
- Inputs to the gate can make at most one transition during evaluation.
- Output can be in the high impedance state during and after evaluation (PDN off), state is stored on C_L.

Properties of Dynamic Gates
- Logic function is implemented by the PDN only
 - number of transistors is $N + 2$ (versus 2N for static complementary CMOS)
 - Full swing outputs ($V_{OL} = \text{GND}$ and $V_{OH} = V_{DD}$)
 - Non-ratioed - sizing of the devices does not affect the logic levels
 - Faster switching speeds
 - reduced load capacitance due to lower input capacitance (C_{in})
 - reduced load capacitance due to smaller output loading (C_{out})
 - no I_{sc}, so all the current provided by PDN goes into discharging C_L
- Overall power dissipation usually higher than static CMOS
 - no static current path ever exists between V_{DD} and GND (including P_{on})
 - no glitching
 - higher transition probabilities
 - extra load on Clk
 - PDN starts to work as soon as the input signals exceed V_{TN}, so V_M, V_{IH}, and V_{IL} equal to V_{TN}
 - low noise margin (NML)
- Needs a precharge/evaluate clock

LE of Dynamic Gates

Issues in Dynamic Design 1: Charge Leakage

Dominant component is subthreshold current
Solution to Charge Leakage

Same approach as level restorer for pass-transistor logic.

Dynamic Gate VTC

\[V_{\text{out}} = \begin{cases} V_N & \text{if } V_i = V_N \\ V_M & \text{if } V_i = V_M \end{cases} \]

Issues in Dynamic Design 2: Charge Sharing

- Charge initially stored on \(C_L \):
 - \(C_A \) previously discharged
- When \(A \) rises, this charge is redistributed (shared) between \(C_L \) and \(C_A \)
- Makes \(\text{Out} \) drop below \(V_{\text{DD}} \)

Solution to Charge Sharing

- Keeper helps a lot
- Can still get failures if \(\text{Out} \) drops below inverter \(V_{\text{sw}} \)
- Another option: precharge internal nodes
- Increases power and area
Issues in Dynamic Design 3: Clock Feedthrough

Coupling between Out and Clk input of the precharge device due to the gate to drain capacitance. So voltage of Out can rise above V_{DD}. The fast rising (and falling edges) of the clock couple to Out.

Backgate Coupling Effect

Clock Feedthrough

Other Effects
- Capacitive coupling
- Substrate coupling
- Minority charge injection
- Supply noise (ground bounce)

Issues in Dynamic Design 4: Backgate Coupling

Dynamic NAND

Static NAND

Next Lecture
- Digital arithmetic
 - Adders
- Domino Logic