What is this class all about?

- Introduction to digital integrated circuit design engineering
 - Will describe models and key concepts needed to be a good digital IC designer

- Models allow us to reason about circuit behavior
 - Allow analysis and optimization of the circuit’s performance, power, cost, etc.
 - Understanding circuit behavior is key to making sure it will actually work

- Teach you how to make sure your circuit works
 - Do you want your transistor to be the one that screws up a 1 billion transistor chip?
Detailed Topics

- CMOS devices and manufacturing technology
- CMOS gates
- Memories
- Propagation delay, noise margins, power
- Combinational and sequential circuits
- Interconnect
- Timing and clocking
- Arithmetic building blocks
- Design methodologies

What will you learn?

- Understanding, designing, and optimizing digital circuits for various quality metrics:
 - Performance (speed)
 - Power dissipation
 - Cost
 - Reliability
Practical Information

- **Instructor**
 - Prof. Elad Alon
 - 565 Cory Hall, 642-0237, elad@eecs
 - Office hours: TuTh 11am-12pm

- **TAs:**
 - John Crossley, crossley@eecs (OH: Wed. 3-4pm)
 - Abhinav Gupta, agupta@eecs (OH: Mon. 1-2pm)
 - Lingkai Kong konglk@berkeley (OH: Wed. 4-5pm)

- **Web page:**
 - http://bwrc.eecs.berkeley.edu/Classes/ICDesign/EE141_f08/

Discussions and Labs

- **Discussion sessions**
 - F 9-10am, Abhinav
 - F 2-3pm, Lingkai
 - M 5-6pm, John
 - Same material in all sessions!

- **Labs (353 Cory)**
 - M 3-6pm
 - Tu 12-3pm
 - F 10am-1pm

- Please choose one lab session and stick with it!
Class Organization

- 9 Assignments
- One design project (with a few phases)
- Labs: 5 software
- 2 midterms, 1 final
 - Midterm 1: Thurs., October 2, evening (TBD)
 - Midterm 2: Tues., November 4, evening (TBD)
 - Final: Sat., December 20, 12:30-3:30pm (TBD)
Some Important Announcements

- Please use the newsgroup for asking questions (ucb.class.ee141)
- Can work together on homework
 - But you must turn in your own solution
- Please don’t bring food/drinks to 353 Cory
- Lab reports due 1 week after the lab session
- Project is done in pairs
- No late assignments
 - Solutions available shortly after due date/time
- Don’t even think about cheating!

Grading Policy

- Homeworks: 12%
- Labs: 8%
- Projects: 20%
- Midterms: 30%
- Final: 30%
Class Material

- Class notes: Web page
- Lab Reader: Web page
- Check web page for the availability of tools

The Web Site

- The sole source of information

 http://bwrc.eecs.berkeley.edu/icdesign/eecs141_f08

- Class and lecture notes
- Assignments and solutions
- Lab and project information
- Exams
- Many other goodies …

Print only what you need: Save a tree!
Software

- Cadence
 - Widely used in industry
 - Online tutorials and documentation

- HSPICE for simulation

Getting Started

- Assignment 1: Getting SPICE to work – see web-page
- Due next Thursday, September 4, 5pm
- NO discussion sessions or labs this week.
- First discussion sessions in Week 2
- First software lab in Week 3
Introduction

- Why is designing digital ICs different today than it was before?
- Will it change in future?

The First Computer

- The Babbage Difference Engine
 - 25,000 parts
 - cost: £17,470
ENIAC - The First Electronic Computer (1946)

![ENIAC image]

The Transistor Revolution

First transistor
Bell Labs, 1948
The First Integrated Circuits

Bipolar logic
1960's

ECL 3-input Gate
Motorola 1966

Intel 4004 Microprocessor

2,300 transistors (12mm²)
740 KHz operation
(10μm PMOS technology)
Intel Pentium 4 Microprocessor

125,000,000 transistors
(112mm²)
3.8 GHz operation
(90nm CMOS technology)

Intel Core 2 Microprocessor

291,000,000 transistors
(143mm²)
3 GHz operation
(65nm CMOS technology)
Moore’s Law

- In 1965, Gordon Moore noted that the number of transistors on a chip doubled every 18 to 24 months.

- He made a prediction that semiconductor technology will double its effectiveness every 18 months.

Electronics, April 19, 1965.
Evolution in Complexity

- Human memory
- Human DNA

- Human DNA
- Human memory

- Encyclopedia
- 2 hrs CD Audio
- 30 sec HDTV

Transistor Counts

Transistor Counts in Intel's Microprocessors

- 486DX
- Pentium
- Pentium II
- Pentium Pro
- Pentium II
- Pentium MMX
- Pentium III
- Pentium 4
- Itanium
- Itanium II
- Core2

Doubles every 2 years
Frequency

Frequency Trends in Intel's Microprocessors

Has been doubling every 2 years, but is now slowing down

Did this really happen?

Courtesy, Intel
Power Dissipation Data

Has been > doubling every 2 years

Has to stay ~constant

Cause: Power Density

Power density too high for cost-effective cooling
Not enough cooling...

Not Only Microprocessors

Cell Phone

Digital Cellular Market
(Phones Shipped)

<table>
<thead>
<tr>
<th>Year</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>1996</td>
<td>48M</td>
</tr>
<tr>
<td>1997</td>
<td>86M</td>
</tr>
<tr>
<td>1998</td>
<td>162M</td>
</tr>
<tr>
<td>1999</td>
<td>260M</td>
</tr>
<tr>
<td>2000</td>
<td>435M</td>
</tr>
</tbody>
</table>

(data from Texas Instruments)
Challenges in Digital Design

“Microscopic Problems”
- Ultra-high speed design
- Interconnect
- Noise, Crosstalk
- Reliability, Manufacturability
- Power Dissipation
- Clock distribution.

“Macroscopic Issues”
- Complexity
- Time-to-Market
- Millions of Gates
- High-Level Abstractions
- Reuse & IP: Portability
- Predictability
- etc.

Everything Looks a Little Different

...and There’s a Lot of Them!

Productivity Trends

Complexity outpaces design productivity

58%/Yr. compounded Complexity growth rate
21%/Yr. compound Productivity growth rate

Source: Sematech

Courtesy, ITRS Roadmap
Why Scaling?

- Technology shrinks by 0.7/generation
- With every generation can integrate 2x more functions per chip; chip cost does not increase significantly
- Cost of a function decreases by 2x
- But …
 - How to design chips with more and more functions?
 - Design engineering population does not double every two years…
- Hence, a need for more efficient design methods
 - Exploit different levels of abstraction

Design Abstraction Levels

[Diagram showing abstraction levels from device to system]
Next Lecture

- Introduce basic metrics for design of integrated circuits – how to measure delay, power, cost, etc.