Announcements

- Homework #7 due Thursday
 - Project #1 due next Thurs.
Transition Activity and Power

- Energy consumed in N cycles, E_N:

$$E_N = C_L \cdot V_{DD}^2 \cdot n_{0\rightarrow1}$$

$n_{0\rightarrow1}$ – number of $0\rightarrow1$ transitions in N cycles

$$P_{avg} = \lim_{N \to \infty} \frac{E_N}{N} \cdot f = \left(\lim_{N \to \infty} \frac{n_{0\rightarrow1}}{N} \right) \cdot C_L \cdot V_{DD}^2 \cdot f$$

$$\alpha_{0\rightarrow1} = \lim_{N \to \infty} \frac{n_{0\rightarrow1}}{N} \cdot f$$

$$P_{avg} = \alpha_{0\rightarrow1} \cdot C_L \cdot V_{DD}^2 \cdot f$$
Factors Affecting Transition Activity

- “Static” component (does not account for timing)
 - Type of Logic Function (NOR vs. XOR)
 - Type of Logic Style (Static vs. Dynamic)
 - Signal Statistics
 - Inter-signal Correlations

- “Dynamic” or timing dependent component
 - Circuit Topology
 - Signal Statistics and Correlations

Type of Logic Function: NOR

Example: Static 2-input NOR Gate

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>Out</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Assume signal probabilities
- \(p_{A=1} = 1/2 \)
- \(p_{B=1} = 1/2 \)

Then transition probability
- \(p_{0 \rightarrow 1} = p_{\text{Out}=0} \times p_{\text{Out}=1} \)
 - \(= 3/4 \times 1/4 = 3/16 \)

If inputs switch every cycle
- \(\alpha_{0 \rightarrow 1} = 3/16 \)
Type of Logic Function: NAND

Example: Static 2-input NAND Gate

Assume signal probabilities
\[p_{A=1} = 1/2 \]
\[p_{B=1} = 1/2 \]

Then transition probability
\[p_{0 \rightarrow 1} = p_{Out=0} \times p_{Out=1} \]
\[= 3/4 \times 1/4 = 3/16 \]

If inputs switch every cycle
\[\alpha_{0 \rightarrow 1} = 3/16 \]

Type of Logic Function: XOR

Example: Static 2-input XOR Gate

Assume signal probabilities
\[p_{A=1} = 1/2 \]
\[p_{B=1} = 1/2 \]

Then transition probability
\[p_{0 \rightarrow 1} = p_{Out=0} \times p_{Out=1} \]
\[= \]

If inputs switch in every cycle
\[\alpha_{0 \rightarrow 1} = \]
Clock

- Always switches
- Often consumes 25-50% of total power
- Clock gating commonly employed

Problem: Reconvergent Fanout

\[P(Z = 1) = P(B = 1) \cdot P(X = 1 \mid B=1) \]

Becomes complex and intractable fast
Inter-Signal Correlations

Logic without reconvergent fanout

\[P_{0 \rightarrow 1} = (1 - p_A p_B) p_A p_B \]

Logic with reconvergent fanout

\[P(Z = 1) = p(C=1 | B=1) p(B=1) \]

\[p_{0 \rightarrow 1} = 0 \]

- Need to use conditional probabilities to model inter-signal correlations
- CAD tools best for performing such analysis

Glitching in Static CMOS

The result is correct, but there is extra power dissipated

Also known as dynamic hazards
Example: Chain of NAND Gates

![NAND gate diagram]

Principles for Power Reduction

- Most important idea: reduce waste
- Examples:
 - Don't switch capacitors you don't need to
 - Clock gating, glitch elimination, logic re-structuring
 - Don't run circuits faster than needed
 - Power αV_{DD}^2 – can save a lot by reducing supply for circuits that don't need to be as fast
 - Parallelism falls into this category
- Let's say we do a good job of that – then what?
Energy – Performance Space

- Plot all possible designs on a 2-D plane
 - No matter what you do, can never get below/to the right of the solid line
- This line is called “Pareto Optimal Curve”
 - Usually (always) follows law of diminishing returns

Optimization Perspective

- Instead of metrics like EDP, this curve often provides information more directly
 - Ex1: What is minimum energy for XX performance?
 - Ex2: Over what range of performance is a new technique (dotted line) actually beneficial?
Key Observation

- Define the Energy/Performance sensitivity of a parameter, for example:

\[
S_{V_{DD}} = \frac{\partial \text{Energy}}{\partial \text{Perf}} \frac{\partial V_{DD}}{\partial V_{DD}} \quad S_{V_{T}} = \frac{\partial \text{Energy}}{\partial \text{Perf}} \frac{\partial V_{T}}{\partial V_{T}}
\]

- At optimal point, sensitivities to all parameters should be the same (ignoring constraints)
 - Must equal slope of the Pareto optimal curve
 - Otherwise, could trade one parameter for another and end up with lower energy at same performance

Sensitivity Example
Sensitivity Example
Next Lecture

- CMOS Scaling