Announcements

- Homework #8 due next Tuesday
Class Material

- Last lecture
 - Latches and flip-flops
- Today’s lecture
 - Timing
- Reading
 - Chapter 7, 10

Timing
Synchronous Timing

```
CLK
In
R1  C_in
    |  C
    V
R2  C_out
Out
```

Latch Parameters

```
D  Q
Clk
```

- Delays can be different for rising and falling data transitions.
Register Parameters

Delays can be different for rising and falling data transitions

Timing Constraints

Cycle time (max): $T_{\text{Clk}} > t_{\text{clk-q}} + t_{\text{logic}} + t_{\text{setup}}$

Race margin (min): $t_{\text{hold}} < t_{\text{clk-q, min}} + t_{\text{logic, min}}$
Clock Nonidealities

- **Clock skew**
 - Spatial variation in temporally equivalent clock edges; deterministic + random, t_{SK}

- **Clock jitter**
 - Temporal variations in consecutive edges of the clock signal; modulation + random noise
 - Cycle-to-cycle (short-term) t_{JS}
 - Long term t_{JL}

- **Variation of the pulse width**
 - Important for level sensitive clocking

Clock Uncertainties

Sources of clock uncertainty
Both skew and jitter affect the effective cycle time.

Only skew affects the race margin (usually).
Positive and Negative Skew

(a) Positive skew

(b) Negative skew

Positive Skew

Launching edge arrives before the receiving edge
Negative Skew

Receiving edge arrives before the launching edge

Timing Constraints

Minimum cycle time:

\[T_{\text{clk}} - \delta = t_{\text{clk-q}} + t_{\text{setup}} + t_{\text{logic}} \]

Worst case is when receiving edge arrives early (positive \(\delta \))
Timing Constraints

Hold time constraint:
\[t_{(clk-q, min)} + t_{(logic, min)} > t_{hold} + \delta \]

Worst case is when receiving edge arrives late
Race between data and clock

Longest Logic Path in Edge-Triggered Systems

Latest point of launching
Earliest arrival of next cycle
Clock Constraints in Edge-Triggered Systems

If launching edge is late and receiving edge is early, the data will not be too late if:

\[t_{\text{clk-q}} + t_{\text{logic}} + t_{\text{setup}} < T_{\text{CLK}} - t_{J_{S,1}} - t_{J_{S,2}} - \delta \]

Minimum cycle time is determined by the maximum delays through the logic

\[t_{\text{clk-q}} + t_{\text{logic}} + t_{\text{setup}} + \delta + 2t_{J_{S}} < T_{\text{CLK}} \]

Skew can be either positive or negative

Shortest Path

Earliest point of launching

Data must not arrive before this time

Nominal clock edge
Clock Constraints in Edge-Triggered Systems

If launching edge is early and receiving edge is late:

\[t_{\text{clk-q, min}} + t_{\text{logic, min}} - t_{JS,1} > t_{\text{hold}} + t_{JS,2} + \delta \]

Minimum logic delay

\[t_{\text{clk-q, min}} + t_{\text{logic, min}} > t_{\text{hold}} + 2t_{JS} + \delta \]

(This assumes jitter at launching and receiving clocks are independent – which usually is not true)

Pipelining

<table>
<thead>
<tr>
<th>Clock Period</th>
<th>Adder</th>
<th>Absolute Value</th>
<th>Logarithm</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>a_1 + b_1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>a_2 + b_2</td>
<td></td>
<td>a_1 + b_1</td>
</tr>
<tr>
<td>3</td>
<td>a_3 + b_3</td>
<td></td>
<td>a_2 + b_2</td>
</tr>
<tr>
<td>4</td>
<td>a_4 + b_4</td>
<td></td>
<td>a_3 + b_3</td>
</tr>
<tr>
<td>5</td>
<td>a_5 + b_5</td>
<td></td>
<td>a_4 + b_4</td>
</tr>
</tbody>
</table>
Latch-Based Clocking

(Domino logic almost always uses latch-based clocking)

Latch vs. Flip-flop

- **In a flip-flop based system:**
 - Data launches on one rising edge
 - And must arrive before next rising edge
 - If data arrives late, system fails
 - If it arrives early, wasting time
 - Flip-flops have hard edges

- **In a latch-based system:**
 - Data can pass through latch while it is transparent
 - Long cycle of logic can borrow time into next cycle
 - As long as each loop finished in one cycle
Time Borrowing Example

- ϕ_1
- ϕ_2
- Logic
- ϕ_1
- Borrow across half-cycle ϕ_1
- Borrow across pipe stage
- Logic
- Loop has to fit into a cycle

Latch vs. Flip-flop Summary

- Flip-flops generally easier to use
 - Most digital ASICs designed with register-based timing
- But, latches (both pulsed and level-sensitive) allow more flexibility
 - And hence can potentially achieve higher performance
 - Latches can also be made more tolerant of clock uncertainty
 - More in EE241
Next Lecture

- Clock and power distribution