Announcements

- Lab #4 this Fri., next Mon., Tues.
- Homework #4 due today
 - Homework #5 due next Thurs.
- Midterm #1 Tues. Oct. 7th, 6:30-8:00pm in 105 Northgate
Class Material

- Last lecture
 - LE and dynamic power in decoders
- Today’s lecture
 - MOS transistor modeling
 - Will see how to use these models to understand tradeoffs between CMOS gate delay, power, etc.
- Reading (3.3.1-3.3.2)

MOS Transistor
Threshold Voltage: Concept

- With positive gate bias, electrons pulled toward the gate
- With large enough bias, enough electrons will be pulled to "invert" the surface (p→n type)
- Voltage at which surface inverts: “magic” threshold voltage V_T

The Threshold Voltage

Threshold

$$V_T = \varphi_{FB} + 2\varphi_F + \frac{Q_B}{C_{ox}}$$

Depletion charge

$$V_T = V_{T0} + \gamma \cdot \left(\sqrt{2\varphi_F + V_{SS}} - \sqrt{2\varphi_F} \right)$$

Fermi potential

$$\varphi_F = \phi_T \cdot \ln \frac{N_A}{n_i}$$

- $2\varphi_F$ is approximately 0.6V for p-type substrates
- γ is the body factor
- V_{T0} is approximately 0.45V for our process
Transistor with Gate and Drain Bias

The Drain Current

- Charge density:
 \[Q(x) = \]

- Velocity:
 \[v_n(x) = \]

- Current:
 \[I_D = \]
Solving the Drain Current

- Integrate along the channel:

Plot of I-V Curve

- Is this really what happens?
Cause of the Problem

- Why does the current bend down?

- When \((V_{GS} - V_{TH}) - V_{DS}\) is negative, in our analysis the sign of the carriers changes
 - But transistors don’t actually behave this way

- Look at what really happens to channel charge:

Transistor in Saturation

\[0 < V_{GS} - V_T < V_{DS} \]

Transistor in Saturation

- Pinch-off
Saturation

- For \((V_{GS} - V_T) < V_{DS}\), the effective drain voltage and current saturate:

\[
V_{DS,\text{eff}} = (V_{GS} - V_T)
\]

\[
I_D = \frac{k_n'}{2} \cdot \frac{W}{L} \cdot (V_{GS} - V_T)^2
\]

- Of course, real drain current isn’t totally independent of \(V_{DS}\)
 - For example, approx. for channel-length modulation:

\[
I_D = \frac{k_n'}{2} \cdot \frac{W}{L} \cdot (V_{GS} - V_T)^2 \cdot (1 + \lambda \cdot V_{DS})
\]

Modes of Operation

- **Cutoff:**
 \(V_{GS} - V_T < 0\)
 \(I_D = 0\)

- **Linear (Resistive):**
 \(V_{GS} - V_T > V_{DS}\)
 \(I_D = k_n' \cdot \frac{W}{L} \cdot \left[(V_{GS} - V_T) \cdot V_{DS} - \frac{V_{DS}^2}{2} \right] \)

- **Saturation:**
 \(0 < V_{GS} - V_T < V_{DS}\)
 \(I_D = \frac{k_n'}{2} \cdot \frac{W}{L} \cdot (V_{GS} - V_T)^2 \cdot (1 + \lambda \cdot V_{DS})\)
Another Way of Looking at This

Cutoff:

\[V_{GS} - V_T < 0 \quad \Rightarrow \quad I_D = 0 \]

On: (Linear or Saturated)

\[V_{DS, eff} = \min(V_{GS} - V_T, V_{DS}) \]

\[I_D = k_n \frac{W}{L} \left[\left(V_{GS} - V_T\right) \cdot V_{DS, eff} - \frac{V_{DS, eff}^2}{2} \right] \]

Current-Voltage Relations: A Good Ol’ Transistor

![Graph showing current-voltage relations for different gate voltages.]
Current-Voltage Relations: The Deep Sub-Micron Transistor

![Graph showing current-voltage relationships](image)

Velocity Saturation

- Velocity saturates due to carrier scattering effects

![Graph showing velocity saturation](image)
Velocity Saturation

Long-channel device

Short-channel device

I_D versus V_GS

Long Channel (L=2.5µm)

Short Channel (L=0.25µm)
Including Velocity Saturation

Approximate velocity:

\[v = \frac{\mu_n \xi}{1 + \xi/\xi_c} \quad \text{for} \quad \xi \leq \xi_c \]

\[= v_{sat} \quad \text{for} \quad \xi \geq \xi_c \]

Continuity requires that:

\[\xi_c = 2v_{sat}/\mu_n \]

Integrating to find the current again:

\[I_D = \frac{\mu_n C_{ox}}{1 + (V_{DS}/\xi_c L)} \left[\left(V_{GS} - V_T \right) V_{DS} - \frac{V_{DS}^2}{2} \right] \]

Velocity Saturation Drain Current

- Saturation occurs when carriers reach \(v_{sat} \)

\[I_D = W C_{ox} \left(V_{GS} - V_T - V_{DSAT} \right) v_{sat} \]

- We also know that:

\[I_D = \frac{\mu_n C_{ox}}{1 + (V_{DSAT}/\xi_c L)} \left(\frac{W}{L} \right) \left[\left(V_{GS} - V_T \right) V_{DSAT} - \frac{V_{DSAT}^2}{2} \right] \]

- Equating the two expressions gives \(V_{DSAT} \) and \(I_D \):

\[V_{DSAT} = \frac{(V_{GS} - V_T) \xi_c L}{(V_{GS} - V_T) + \xi_c L} \quad I_D = W v_{sat} C_{ox} \frac{(V_{GS} - V_T)^2}{(V_{GS} - V_T) + \xi_c L} \]
Regions of Operation

- **Resistive Saturation**
 - \(V_{DS} = V_{GS} - V_{T} \)

- **Velocity Saturation**
 - \(V_{DS} = V_{GS} \cdot V_{T} \)

Long Channel
- \(L = 2.5\mu m \)

Short Channel
- \(L = 0.25\mu m \)

W/L = 1.5

Models, Models, Models...

- **Exact behavior of transistor in velocity sat. somewhat challenging if want simple/easy to use models**

- **So, many different models developed over the years**
 - v-sat, alpha, unified, \(V_{T*} \), etc.

- **I often use v-sat model I just presented**
 - Works well for calculating LE of complex gates (more later)
 - But still somewhat complicated – often want even simpler model
Simplified Velocity Saturation

- Assume velocity perfectly linear until hit υ_{sat}

\[\xi_c = \frac{\upsilon_{sat}}{\mu} \]

Simplified Velocity Saturation (cont'd)

- Assume $V_{DSAT} = \xi_c L$ when $(V_{GS} - V_T) > \xi_c L$
Simplified Model

- Define \(V_{GT} = V_{GS} - V_T \), \(V_{D,VSAT} = \xi_c \cdot L \)

A Unified Model for Manual Analysis

Define \(V_{GT} = V_{GS} - V_T \)

- For \(V_{GT} \leq 0 \): \(I_D = 0 \)

- For \(V_{GT} \geq 0 \):
 \[
 I_D = k \cdot \frac{W}{L} \cdot \left(V_{GT} \cdot V_{DS,eff} - \frac{V_{DS,eff}^2}{2} \right) \cdot (1 + \lambda \cdot V_{DS})
 \]
 with \(V_{DS,eff} = \min (V_{GT}, V_{DS}, V_{D,VSAT}) \)
Simple Model versus SPICE

![Graph showing Simple Model versus SPICE](image)

One Last Simplification

- If device always operates in velocity sat.:

 \[
 I_D = k \cdot \frac{W}{L} \left(V_{GS} - V_T - \frac{V_{D,FSAT}}{2} \right) V_{D,FSAT}
 \]

- "\(V_T^*\)" model:

 \[
 V_T^* = V_T + \frac{V_{D,FSAT}}{2}
 \]

 \[
 I_D = k \cdot \frac{W}{L} \left(V_{GS} - V_T^* \right) V_{D,FSAT}
 \]

- Good for first cut, simple analysis
Transistor Model for Manual Analysis

Table 3.2 Parameters for manual model of generic 0.25 μm CMOS process (minimum length device).

<table>
<thead>
<tr>
<th></th>
<th>V_m (V)</th>
<th>γ (V$^{-2}$)</th>
<th>$V_{th,ar}$ (V)</th>
<th>n (A/V2)</th>
<th>λ (V$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NMOS</td>
<td>0.43</td>
<td>0.4</td>
<td>0.63</td>
<td>1.15×10^{-6}</td>
<td>0.06</td>
</tr>
<tr>
<td>PMOS</td>
<td>-0.4</td>
<td>-0.4</td>
<td>-1</td>
<td>-3.0×10^{-4}</td>
<td>-0.1</td>
</tr>
</tbody>
</table>

Textbook page 103

Next Lecture

- MOS Capacitance