What is this class all about?

- **Introduction to digital integrated circuit design engineering**
 - Will describe models and key concepts needed to be a good digital IC designer

- **Models allow us to reason about circuit behavior**
 - Allow analysis and optimization of the circuit's performance, power, cost, etc.
 - Understanding circuit behavior is key to making sure it will actually work

- **Teach you how to make sure your circuit works**
 - Do you want your transistor to be the one that screws up a 1 billion transistor chip?
Detailed Topics

- CMOS devices and manufacturing technology
- CMOS gates
- Memories
- Propagation delay, noise margins, power
- Combinational and sequential circuits
- Interconnect
- Timing and clocking
- Arithmetic building blocks
- Design methodologies

What will you learn?

- Understanding, designing, and optimizing digital circuits for various quality metrics:
 - Performance (speed)
 - Power dissipation
 - Cost
 - Reliability
Practical Information

- **Instructor**
 - Prof. Elad Alon
 - 519 Cory Hall, 642-0237, elad@eecs
 - Office hours: Tu. 3:30-4:30pm, Thurs. 2:30-3:30pm

- **TAs:**
 - Alberto Puggelli, puggelli@eecs (OH: Wed. 4-5pm)
 - Bonjern Yang, byang@eecs (OH: Wed. 3-4pm)

- **Web page:**
 - http://bwrc.eecs.berkeley.edu/Classes/ICDesign/EE141_f12/

Discussions and Labs

- **Discussion sessions**
 - F 2-3pm (Bonjern)
 - M 5-6pm (Alberto)
 - Same material in all sessions!

- **Labs (125 Cory)**
 - M 3-6pm (Bonjern)
 - Tu 3-6pm (Alberto)
 - Machines to left of double doors, with larger monitors

- Please choose one lab session and stick with it!
Your EECS141 Week

<table>
<thead>
<tr>
<th></th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>M</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Lab (Bonjern)</td>
<td>125 Cory</td>
</tr>
<tr>
<td>T</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>OH (Elad)</td>
<td>519 Cory</td>
</tr>
<tr>
<td>W</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>OH (Bonjern)</td>
<td>TBD Cory</td>
</tr>
<tr>
<td>R</td>
<td>Lab (Bonjern)</td>
<td>277 Cory</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>OH (Elad)</td>
<td>519 Cory</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>DISC* (Bonjern)</td>
<td>299 Cory</td>
</tr>
</tbody>
</table>

* Discussion sections will cover identical material

EECS141 Lecture #1 7

Class Organization

- 9 Assignments
- One design project (with a few phases)
- Labs: 5 software
- 2 midterms, 1 final
 - Midterm 1: Thurs., October 4, evening (TBD)
 - Midterm 2: Thurs., November 1, evening (TBD)
 - Final: Wed., December 12, 8-11am

EECS141 Lecture #1 8
Some Important Announcements

- Please use piazza for asking questions (more later)
- Can work together on homework
 - But you must turn in your own solution
- Lab reports due 1 week after the lab session
 - Lab rules: http://california.eecs.berkeley.edu/iesg/labs/labinfo/labrules.asp
- Project is done in pairs
- No late assignments
 - Solutions available shortly after due date/time
- Don’t even think about cheating!

Grading Policy

- Homeworks: 12%
- Labs: 8%
- Projects: 20%
- Midterms: 30%
- Final: 30%
Class Material

- Class notes: Web page
- Lab Reader: Web page
- Check web page for the availability of tools

The Web Site

http://bwrc.eecs.berkeley.edu/icdesign/eecs141_f10

- Class and lecture notes
- Assignments and solutions
- Lab and project information
- Exams
- Many other goodies …

Print only what you need: Save a tree!
The Web Site #2

- All announcements made at:

 https://piazza.com/berkeley/fall2012/ee141

- Be sure to enroll!

- Piazza will also be the main forum for posting and answering questions
 - Please post your questions there to minimize response time
 - Also, check that your question hasn’t been answered already

Software

- Cadence
 - Widely used in industry
 - Online tutorials and documentation

- HSPICE for simulation
Getting Started

- Assignment 1: Getting SPICE to work – see web-page
- Due next Thursday, August 30, 5pm
- NO discussion sessions or labs this week.
- First discussion sessions in Week 2
- First software lab in Week 3

Introduction

 - What made Digital IC design what it is today
 - Why is designing digital ICs different today than it was before?
 - Will it change in the future?
The First Computer

- **The Babbage Difference Engine**
 - 25,000 parts
 - cost: £17,470

ENIAC - The First Electronic Computer (1946)
The Transistor Revolution

First transistor
Bell Labs, 1948

The First Integrated Circuits

Bipolar logic
1960's

ECL 3-input Gate
Motorola 1966
Intel 4004 Microprocessor

2,300 transistors (12mm²)
740 KHz operation
(10μm PMOS technology)

Intel Pentium 4 Microprocessor

Intel, 2005.
125,000,000 transistors
(112mm²)
3.8 GHz operation
(90nm CMOS technology)
Intel Xeon (E7-8800)

Intel, 2011.
2,600,000,000 transistors
(513mm²)
2.4 GHz operation
(32nm CMOS technology)

Still Happening - Intel Test-Chip (2009)

22nm
364 MByte SRAM
>2.91 billion transistors
Moore’s Law

- In 1965, Gordon Moore noted that the number of transistors on a chip doubled every 18 to 24 months.

- He made a prediction that semiconductor technology will double its effectiveness every 18 months.

Evolution in Complexity

Transistor Counts

Doubles every 2 years
Frequency

Frequency Trends in Intel's Microprocessors

- Has been doubling every 2 years, but is now slowing down

- Did this really happen?

Courtesy, Intel
Power Dissipation Data

Has been > doubling every 2 years

Has to stay ~constant

Cause: Power Density

Power density too high for cost-effective cooling
Not enough cooling...

Not Only Microprocessors

Cell Phone

Digital Cellular Market (Phones Shipped)

<table>
<thead>
<tr>
<th>Year</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>1996</td>
<td>48M</td>
</tr>
<tr>
<td>1997</td>
<td>86M</td>
</tr>
<tr>
<td>1998</td>
<td>162M</td>
</tr>
<tr>
<td>1999</td>
<td>260M</td>
</tr>
<tr>
<td>2000</td>
<td>435M</td>
</tr>
</tbody>
</table>

(data from Texas Instruments)
Challenges in Digital Design

∞ DSM

“Microscopic Problems”
• Ultra-high speed design
• Interconnect
• Noise, Crosstalk
• Reliability, Manufacturability
• Power Dissipation
• Clock distribution.

Everything Looks a Little Different

∞ 1/DSM

“Macroscopic Issues”
• Complexity
• Time-to-Market
• Millions of Gates
• High-Level Abstractions
• Reuse & IP: Portability
• Predictability
• etc.

...and There’s a Lot of Them!

Productivity Trends

Complexity outpaces design productivity

Source: Sematech

Courtesy, ITRS Roadmap
Why Scaling?

- Technology shrinks by 0.7/generation
- With every generation can integrate 2x more functions per chip; chip cost does not increase significantly
- Cost of a function decreases by 2x
- But …
 - How to design chips with more and more functions?
 - Design engineering population does not double every two years…
- Hence, a need for more efficient design methods
 - Exploit different levels of abstraction

Design Abstraction Levels
Next Lecture

- Introduce basics of integrated circuit manufacturing and cost