EE141-Fall 2012
Digital Integrated Circuits

Lecture 12
CMOS Delay and Power Models

Announcements

- Midterm #1 Thurs., 6:30-8:00pm, 141 McCone
 - Be sure to arrive on time

- Midterm review session today, 6pm, 550 Cory

- Lecture will be “taped-ahead” for this Thurs..

- Homework #6 out this Thurs., due next Thurs.
Class Material

- Last lecture
 - MOS Capacitance, delay
- Today’s lecture
 - Improved CMOS Delay and Power Models
- Reading (5.1-5.3, 5.4.2)

Propagation Delay
Transient Response

\[t_{pHL} = \ln(2) C_L R_{eqn} \]
\[t_{PLH} = \ln(2) C_L R_{eqp} \]

\[R_{eq} = \frac{1}{2 \ln(2)} \frac{1}{1 + 2V_{DD} I_{DSAT}} \]

Step Inputs?

- Derived RC model assuming input was a step
 - But input is not a step
 - Transistor turns on gradually

- Let’s look at gate switching more carefully
 - Use our models to understand the effect of input slope
Input Slope Dependence

- One way to analyze slope effect
 - Plug non-linear IV into diff. equation and solve...
- Simpler, approximate solution:
 - Use V_T^* model

\[I_{out} = C_L \frac{dV_{out}}{dt} = I_{NMOS} - I_{PMOS} \]

Slope Analysis

- For falling edge at output:
 - For reasonable inputs, can ignore I_{PMOS}
 - Either V_{ds} is very small, or V_{gs} is very small

- So, output current ramp starts when $V_{in} = V_T^*$
 - Could evaluate the integral implied by slide 7
 - Learn more by using an intuitive, graphical approach
Slope Effect
Result Summary

- For reasonable input slopes:

\[t_{p,\text{ramp}} = t_{p,\text{step}} + \frac{V_T^*}{V_{DD}} \cdot t_{p,\text{in}} \]

- For \(t_{p,\text{avg}} \), \(V_T^* \) is \((V_{TN^*} + V_{TP^*})/2 \)
 - \(V_T^*/V_{DD} \) typically \(\sim 1/3 \) at nominal supply

Model vs. Spice Data

- For reasonable input slope
 - Model matches Spice very well

- Model breaks with very large \(t_r \)
 - Input looks “DC” – traces out VTC
 - Have other problems here anyways
 - Short-circuit current
Implications

- Delay of an inverter after a long chain:
CMOS Power Dissipation

Where Does Power Go in CMOS?

- Switching power
 - Charging/discharging capacitors

- Leakage power
 - Transistors are imperfect switches

- Short-circuit power
 - Both pull-up and pull-down on during transition

- Static currents
 - Biasing currents, in e.g. analog, memory
Dynamic Power Consumption

- One half of the energy from the supply is consumed in the pull-up network, one half is stored on C_L.
- Energy from C_L is dumped during the $1 \rightarrow 0$ transition.

\[E_{0\rightarrow1} = C_L V_{DD}^2 \]
\[E_R = \frac{1}{2} C_L V_{DD}^2 \]
\[E_C = \frac{1}{2} C_L V_{DD}^2 \]

Circuits with Reduced Swing

\[E_{0\rightarrow1} = \]

\[V_{DD} \]
\[V_{DD} - \Delta V \]
Dynamic Power Consumption

Power = Energy/transition • (Transition rate/2)
= Energy/transition • (Rising transition rate)

= $C_L V_{DD}^2 \cdot f_{0\rightarrow1}$
= $C_L V_{DD}^2 \cdot f \cdot P_{0\rightarrow1}$
= $C_{\text{switched}} V_{DD}^2 \cdot f$

- Power dissipation is data dependent – depends on the switching probability
- Switched capacitance $C_{\text{switched}} = C_L \cdot P_{0\rightarrow1}$

Transition Activity and Power

- Energy consumed in N cycles, E_N:

$$E_N = C_L \cdot V_{DD}^2 \cdot n_{0\rightarrow1}$$

$n_{0\rightarrow1}$ – number of $0\rightarrow1$ transitions in N cycles

$$P_{\text{avg}} = \lim_{N\rightarrow\infty} \frac{E_N}{N} \cdot f = \left(\lim_{N\rightarrow\infty} \frac{n_{0\rightarrow1}}{N} \right) \cdot C_L \cdot V_{DD}^2 \cdot f$$

$$\alpha_{0\rightarrow1} = \lim_{N\rightarrow\infty} \frac{n_{0\rightarrow1}}{N}$$

$$P_{\text{avg}} = \alpha_{0\rightarrow1} \cdot C_L \cdot V_{DD}^2 \cdot f$$
Short Circuit Current

- Short circuit current usually well controlled

![Short Circuit Current Diagram](image)

Transistor Leakage

- Transistors that are supposed to be off actually leak

![Transistor Leakage Diagram](image)
Diode Leakage

\[
\text{Reverse Leakage Current}
\]

\[
I_{DL} = J_S \times A
\]

- \(J_S = 10-100 \text{ pA/\mu m}^2\) at 25 deg C for 0.25\(\mu\)m CMOS
- \(J_S\) doubles for every 9 deg C!
- Much smaller than transistor leakage in deep submicron

Transistor Leakage

\[
V_{DS} = 1.2V
\]

Drain leakage current is exponential with \(V_{GS} - V_T\)
Sub-Threshold Conduction

Inverse Subthreshold Slope:

\[I_D \sim I_0 e^{\frac{q(V_{GS} - V_T)}{nkT}}, \quad n = 1 + \frac{C_D}{C_{ox}} \]

\[S^{-1} \text{ is } \Delta V_{GS} \text{ for } I_{D2}/I_{D1} = 10 \]

\[S^{-1} = n \left(\frac{kT}{q} \right) \ln(10) \]

Typical values for \(S^{-1} \):
60 .. 100 mV/decade

Transistor Leakage vs. \(V_{DS} \)

Two effects:
- diffusion current (like a bipolar transistor)
- exponential increase with \(V_{DS} \) (\(\eta \): DIBL)
Threshold Variations

Threshold as a function of length (for low V_{DS})

Drain-induced barrier lowering (DIBL) (for short L)

Power Summary
Next Lecture

- CMOS Logic Review