Announcements

- Project #1 due Thursday

Ratioed Logic

Goal: build gates faster/smaller than static complementary CMOS

Ratioed Logic

- Spend power for speed
 - Use pseudo nMOS NOR gates, not NAND gates

- DC characteristics:
 - $V_{OH} = V_{DD}$
 - V_{CL} depends on PMOS to NMOS ratio

Pseudo-NMOS VTC

<table>
<thead>
<tr>
<th>W/L_p</th>
<th>V_{out} (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.25</td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>V_{in} (V)</th>
<th>V_{out} (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>1.5</td>
</tr>
<tr>
<td>1</td>
<td>0.5</td>
</tr>
<tr>
<td>1.5</td>
<td>0</td>
</tr>
</tbody>
</table>
Ratioed Logic LE

- Rising and falling delays aren’t the same
 - Calculate LE for the two edges separately

- For t_{pLH}:
 - $C_{\text{gate}} = WC_G$
 - $C_{\text{inv}} = (3/2)WC_G$
 - $LE_{LH} = \ldots$

Ratioed Logic Pull-down Delay

- Think in terms of the current driving C_{load}

- When you have a conflict between currents
 - Available current is the difference between the two
 - In pseudo-nMOS case:
 \[R_{\text{inv}} = \frac{1}{R_n + \frac{1}{R_p}} \rightarrow R_{\text{inv}} = \frac{R_n}{1 - \left(\frac{R_n}{R_p}\right)} \]
 - (Works because $R_p \gg R_n$ for good noise margin)

Ratioed Logic LE (pull-down edge)

- What is LE for t_{pHL}?
- Switch model would predict $R_{\text{off}} = R_n || R_p$
 - Would that give the right answer for LE?

Response on Falling Edge

- Time constant is smaller, but it takes more time to complete 50% V_{DD} transient.
 - R_p actually takes some current away from discharging C

Improved Loads (2)

- Differential Cascode Voltage Switch Logic (DCVSL)
DCVSL Transient Response

![DCVSL Transient Response graph]

Pass-Transistor Logic

- N transistors
- No static consumption

![Pass-Transistor Logic diagram]

DCVSL Example 1

DCVSL AND:

![DCVSL AND circuit diagram]

Example: AND Gate

\[F = AB \]

![AND Gate circuit diagram]

Pass-Transistor Logic

NMOS-Only Logic

![NMOS-Only Logic circuit diagram]
NMOS-only Switch

Threshold voltage loss causes static power consumption.
NMOS has higher threshold than PMOS (body effect).

NMOS-Only Logic:
Level Restoring Transistor

Advantage:
- Full Swing
- Restorer adds capacitance, takes away pull down current at X
- Ratio problem

Pass Transistor Logic LE

What is LE of “gate” shown below for A and B inputs?
- Hint: Can you answer this question with only the information shown below?

Restorer Sizing

Upper limit on restorer size:
- Pass-transistor pull-down can have several transistors in stack

Pass Transistor Logic LE

In CMOS, a “gate” is defined only when trace a connection all the way back to a supply:
- Otherwise don’t know what drive resistance really is
Restoring Full Swing: CPL

Resistance of Transmission Gate

CPL Level Restore

RC Model of Transmission Gate

Solution 2: Transmission Gate

Pass-Transistor Based Multiplexer
Next Lecture

- Dynamic Logic