Announcements

- Homework #8 due next Tuesday
- Project Phase 3 part 1 due this Sun.

Class Material

- Last lecture
 - Latches and flip-flops
- Today’s lecture
 - Timing
- Reading
 - Chapter 7, 10

Synchronous Timing

Latch Parameters

Delays can be different for rising and falling data transitions
Register Parameters

Delays can be different for rising and falling data transitions.

<table>
<thead>
<tr>
<th>D</th>
<th>Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>t_{setup}</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>D</th>
<th>Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_{hold}</td>
<td></td>
</tr>
</tbody>
</table>

| C | t_{clk-q} |

Clock Uncertainties

Sources of clock uncertainty

Timing Constraints

Cycle time (max): \(T_{\text{CLK}} > t_{\text{clk-q} + t_{\text{logic}} + t_{\text{setup}}} \)

Race margin (min): \(t_{\text{hold}} < t_{\text{clk-q,min} + t_{\text{logic,min}}} \)

Clock Nonidealities

- **Clock skew**
 - Spatial variation in temporally equivalent clock edges; deterministic + random, \(t_{\text{SK}} \)

- **Clock jitter**
 - Temporal variations in consecutive edges of the clock signal; modulation + random noise
 - Cycle-to-cycle (short-term) \(t_{\text{JS}} \)
 - Long term \(t_{\text{JL}} \)

- **Variation of the pulse width**
 - Important for level sensitive clocking

Clock Skew and Jitter

- Both skew and jitter affect the effective cycle time
- Only skew affects the race margin (usually)

Positive and Negative Skew

(a) Positive skew

(b) Negative skew
Positive Skew

Launching edge arrives before the receiving edge

Negative Skew

Receiving edge arrives before the launching edge

Timing Constraints

$$t_{clk-q} + t_{logic} + t_{setup} + \delta < t_{CLK} - t_{JS,1} - t_{JS,2} - \delta$$

Minimum cycle time:

$$T_{clk} - \delta = t_{clk-q} + t_{setup} + t_{logic}$$

Worst case is when receiving edge arrives early (positive $$\delta$$)

Hold time constraint:

$$t_{clk-q, min} + t_{logic, min} > t_{hold} + \delta$$

Worst case is when receiving edge arrives late

Race between data and clock

Longest Logic Path in Edge-Triggered Systems

Latest point of launching

Earliest arrival of next cycle

Clock Constraints in Edge-Triggered Systems

If launching edge is late and receiving edge is early, the data will not be too late if:

$$t_{clk-q} + t_{logic} + t_{setup} < T_{CLK} - t_{JS,1} - t_{JS,2} - \delta$$

Minimum cycle time is determined by the maximum delays through the logic

$$t_{clk-q} + t_{logic} + t_{setup} + \delta + 2t_{JS} < T_{CLK}$$

Skew can be either positive or negative
Shortest Path

Earliest point of launching

Clk

Clk

Nominal clock edge

Data must not arrive before this time

Latch-Based Clocking

| Domino logic almost always uses latch-based clocking |

- In a flip-flop based system:
 - Data launches on one rising edge
 - Must arrive before next rising edge
 - If data arrives late, system fails
 - Flip-flops have hard edges
- In a latch-based system:
 - Data can pass through latch while it is transparent
 - Long cycle of logic can borrow time into next cycle
 - As long as each loop finished in one cycle

Clock Constraints in Edge-Triggered Systems

If launching edge is early and receiving edge is late:

\[
t_{clk-q,min} + t_{logic,min} - t_{JS,1} > t_{hold} + t_{JS,2} + \delta
\]

Minimum logic delay

\[
t_{clk-q,min} + t_{logic,min} > t_{hold} + 2t_{JS} + \delta
\]

(This assumes jitter at launching and receiving clocks are independent – which usually is not true)

Pipelining

Reference

<table>
<thead>
<tr>
<th>Clock Period</th>
<th>Adder Absolute Value</th>
<th>Logarithm</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(a_1 + b_1)</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>(a_2 + b_2)</td>
<td>(\log(a_1 + b_1))</td>
</tr>
<tr>
<td>3</td>
<td>(a_3 + b_3)</td>
<td>(\log(a_2 + b_2))</td>
</tr>
<tr>
<td>4</td>
<td>(a_4 + b_4)</td>
<td>(\log(a_3 + b_3))</td>
</tr>
<tr>
<td>5</td>
<td>(a_5 + b_5)</td>
<td>(\log(a_4 + b_4))</td>
</tr>
</tbody>
</table>

| Pipelined |

Time Borrowing Example
Latch vs. Flip-flop Summary

- Flip-flops generally easier to use
 - Most digital ASICs designed with register-based timing
- But, latches (both pulsed and level-sensitive) allow more flexibility
 - And hence can potentially achieve higher performance
 - Latches can also be made more tolerant of clock uncertainty
 - More in EE241

Next Lecture

- Clock and power distribution