Lecture 27
Flash and DRAM

Announcements

- Project phase 3 final report due Friday
 - Send posters and reports to mailing list

- Final exam
 - Wed. Dec. 12th, 8-11am, Room TBA (see piazza)
 - Review session: Tues. Dec. 11th (stay tuned)

- HKN surveys end of class today
Announcements

- GSI final review on Friday, Monday
- Look out for office hours announcements on the web

Class Material

- Last lecture
 - I/O, power distribution
- Today’s lecture
 - Flash memory
 - DRAM
ROM and Flash

Read-Only Memory Cells

- Diode ROM
- MOS ROM 1
- MOS ROM 2
MOS NOR ROM

Pull-up devices

GND

V_{DD}

MOS NOR ROM Layout

Cell (9.5\lambda \times 7\lambda)

Programming using the Active Layer Only

Polysilicon
Metal1
Diffusion
Metal1 on Diffusion
MOS NAND ROM

All word lines high by default with exception of selected row

MOS NAND ROM Layout

Cell (8λ x 7λ)

Programming using the Metal-1 Layer Only

No contact to VDD or GND necessary; drastically reduced cell size
Loss in performance compared to NOR ROM

- Polysilicon
- Diffusion
- Metal1 on Diffusion
Floating Gate Transistor

- Control gate
- Floating gate
- Thin tunneling oxide
- erasure
- programming
- p-substrate
- n^+ source
- n^+ drain

Many other options ...

Programmable-Threshold

- I_D vs V_{GS}
- "0"-state
- "1"-state
- V_{WL}
- "ON"
- "OFF"
- D_{VT}
Floating-Gate Transistor Programming

Avalanche injection
Removing programming voltage leaves charge trapped
Programming results in higher V_T.

DRAM
1-Transistor DRAM Cell

![Diagram of 1-Transistor DRAM Cell]

Write: C_S is charged or discharged by asserting WL and BL.
Read: Charge redistribution takes place between bit line and storage capacitance.

\[\Delta V = V_{BL} - V_{PRE} = \left(V_{RTT} - V_{PRE} \right) \frac{C_S}{C_S + C_{BL}} \]

Voltage swing is small; typically < 200 mV.

DRAM Cell Observations

- 1T DRAM requires a sense amplifier
- Read-out of the 1T DRAM cell is destructive
 - Need refresh
- Lose a V_{TH} when writing a “1” into a DRAM cell
 - Bootstrap the word lines to a higher value than V_{DD}
Sense Amp Operation

\[V(1) \]

\[\Delta V(1) \]

Sense amp activated

Word line activated

Modern 1T DRAM Cells

Trench Cell

Stacked-capacitor Cell
THE END

- This is just the beginning…