Administrative Stuff

- Discussions start tomorrow (Fri.)
- Labs start next week
 - Everyone should have an EECS instructional account
- Homework #1 is due today
- Homework #2 due next Thursday
Class Material

- Last lecture
 - Basics of IC manufacturing, cost
- Today's lecture
 - Transistor as switches
 - Building an inverter
 - Design metrics

What is a Transistor?

An MOS Transistor

A Switch!

\[|V_{GS}| \geq |V_T| \]

\[V_{GS} \]

S D G

\[R_{on} \]

S \hspace{1cm} D
Switch Model of MOS Transistor

\[|V_{GS}| < |V_T| \] and \[|V_{GS}| > |V_T| \]

NMOS and PMOS

NMOS Transistor: \[V_{GS} > 0 \]
PMOS Transistor: \[V_{GS} < 0 \]
Building a CMOS inverter

Design Metrics

- How to evaluate performance of a digital circuit (gate, block, …)?
 - Cost
 - Reliability
 - Speed/Performance (delay, frequency)
 - Power
Reliability

- The real world is analog
 - All physical quantities you deal with as a circuit designer are actually continuous
- Thus, even a “digital” signal can be noisy:

Noise and Digital Systems

- Circuit needs to work despite “analog” noise
 - Digital gates can reject noise
 - This is actually how digital systems are defined
- Digital system is one where:
 - Discrete values mapped to analog levels and back
 - All the elements (gates) can reject noise
 - For “small” amounts of noise, output noise is less than input noise
 - Thus, for sufficiently “small” noise, the system acts as if it was noiseless
Noise Rejection

- To see if a gate rejects noise:
 - Look at its DC voltage transfer characteristic (VTC)
 - See what happens when input is not exactly 1 or 0

- Ideal digital gate:
 - Noise needs to be larger than $V_{DD}/2$ to have any effect on gate output

\[
\text{Gain} = \begin{cases}
0 & \text{if input is exactly 0 or 1} \\
\infty & \text{otherwise}
\end{cases}
\]

More Realistic VTC

- $V_{OH} = f(V_{OL})$
- $V_{OL} = f(V_{OH})$
- $V_{ML} = f(V_{ML})$

Switching Threshold

- Nominal Voltage Levels
Voltage Mapping

- "1": V_{OH}, V_{IH}, Undefined Region
- "0": V_{IL}, V_{OL}

Graph:
- Slope = -1

Definition of Noise Margins

Gate Output (Stage M) → Gate Input (Stage M+1)

- Noise margin high: $NM_H = V_{OH} - V_{IH}$
- Noise margin low: $NM_L = V_{IL} - V_{OL}$
Digital Gate Noise Reduction: Regenerative Property

A chain of inverters

![Simulated response graph](image)

Regenerative Property (Another View)

Regenerative

Non-Regenerative
Fan-in and Fan-out

There is a modified definition of fan-out for CMOS logic.

Key Reliability Properties

- Absolute noise margin values are not the only things that matter
 - e.g., floating (high impedance) nodes are more easily disturbed than low impedance nodes (in terms of voltage)
- Noise immunity (i.e., how well the gate suppresses noise sources) needs to be considered too

Summary of some key reliability metrics:
- Noise transfer functions & margin (ideal: gain = ∞, margin = \(V_{dd}/2 \))
- Output impedance (ideal: \(R_o = 0 \))
- Input impedance (ideal: \(R_i = ∞ \))
Example: An Old-time Inverter

\[V_{OH} = 3.6\text{V} \]
\[V_{OL} = 0.4\text{V} \]
\[V_{IL} = 0.6\text{V} \]
\[V_{IH} = 2.3\text{V} \]
\[NM_H = V_{OH} - V_{IH} = 1.3\text{V} \]
\[NM_L = V_{IL} - V_{OL} = 0.2\text{V} \]
Fanout of Four (FO4) Delay

- Want a way to characterize the delay of a circuit (roughly) independent of technology

- Most common metric:
 - Delay of an inverter driving four copies of itself (t_{FO4})
A First-Order RC Network

$$v_{out}(t) = (1 - e^{-t/\tau}) \cdot V$$

$$t_p = \ln (2) \tau = 0.69 \cdot RC$$

Important model – matches delay of an inverter

Power Dissipation

Instantaneous power:
$$p(t) = v(t)i(t) = V_{supply}i(t)$$

Peak power:
$$P_{peak} = V_{supply}i_{peak}$$

Average power:
$$P_{ave} = \frac{1}{T} \int_t^{t+T} p(t)dt = \frac{V_{supply}}{T} \int_t^{t+T} i_{supply}(t)dt$$
“Power-Delay” and Energy-Delay

- Want low power and low delay, so how about optimizing the product of the two?
 - So-called “Power-Delay Product”

- Power·Delay is by definition Energy
 - Optimizing this pushes you to go as slow as possible

- Alternative gate metric: Energy-Delay Product
 - EDP = (P_{av}·t_p)·t_p = E·t_p

Energy in CMOS

- The voltage on C_L eventually settles to V_{DD}
- Thus, charge stored on the capacitor is C_LV_{DD}
 - This charge has to flow out of the power supply
- So, energy is just $Q · V_{DD} = (C_LV_{DD}) · V_{DD}$
Energy (the harder way)

\[E_{0 \rightarrow 1} = \int_{0}^{T} P_{DD}(t) \, dt = V_{DD} \int_{0}^{T} i_{DD}(t) \, dt = V_{DD} \int_{0}^{V_{DD}} C_L \, dV_{out} = C_L V_{DD}^2 \]

\[E_C = \int_{0}^{T} P_C(t) \, dt = \int_{0}^{T} V_{out} i_L(t) \, dt = \int_{0}^{V_{DD}} C_L V_{out} \, dV_{out} = \frac{1}{2} C_L V_{DD}^2 \]

Energy Thought Experiment (1)

- Why doesn’t R matter?
Energy Thought Experiment (2)

- Where did the energy go?

![Energy Diagram]

\[E_{\text{vin}} = C_L V_{\text{in}}^2 \]
\[E_{\text{CL}} = \frac{1}{2} C_L V_{\text{in}}^2 \]

Summary

- Understanding the design metrics that govern digital design is crucial
 - Cost
 - Robustness
 - Performance/speed
 - Power and energy dissipation
Next Lecture

- Detailed CMOS switch model
- Building gates with switches
- Design rules