Today’s Lecture

- EE240 CMOS Technology

- Passive devices
 - Motivation
 - Resistors
 - Capacitors
 - (Inductors)

- Next time: MOS transistor modeling
EE240 Process

- 90nm 1P7M CMOS
 - Minimum channel length: 90nm
 - 1 level of polysilicon
 - 7 levels of metal (Cu)
 - 1.2V supply
 - Models for this process not “real”

- Other processes you might see
 - Shorter channel length (45nm / 1V)
 - Bipolar, SiGe HBT
 - SOI

Process Options

- Available for many processes

- Add features to “baseline process”

 - E.g.
 - Silicide block option
 - “High voltage” devices (2.5V & 3.3V, >10V)
 - Low V_{TH} devices
 - Capacitor option (2 level poly, MIM)
 - …
CMOS Cross Section

- Metal
- p⁻ substrate
- p⁺ diffusion
- Poly
- n⁻ well
- n⁺ diffusion

Dimensions

- 1.4nm
- 50nm
- 700µm
- ≥90nm
- 0.6µm
Why Talk About Passives?

Resistors

- No provisions in standard CMOS
- Resistors are bad for digital circuits →
 - Minimized in standard CMOS
 - But, often want big, well-controlled R for analog…
- Sheet resistance of available layers:

<table>
<thead>
<tr>
<th>Layer</th>
<th>Sheet resistance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aluminum</td>
<td>60 mΩ/□</td>
</tr>
<tr>
<td>Polysilicon</td>
<td>5 Ω/□</td>
</tr>
<tr>
<td>N+/P+ diffusion</td>
<td>5 Ω/□</td>
</tr>
<tr>
<td>N-well</td>
<td>1 kΩ/□</td>
</tr>
</tbody>
</table>
How about an N-Well Resistor?

Silicide Block Option

<table>
<thead>
<tr>
<th>Layer</th>
<th>R/Ω</th>
<th>T_C [ppm/°C]</th>
<th>V_C [ppm/V]</th>
<th>B_C [ppm/V]</th>
</tr>
</thead>
<tbody>
<tr>
<td>N+ poly</td>
<td>100</td>
<td>-800</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>P+ poly</td>
<td>180</td>
<td>200</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>N+ diffusion</td>
<td>50</td>
<td>1500</td>
<td>500</td>
<td>-500</td>
</tr>
<tr>
<td>P+ diffusion</td>
<td>100</td>
<td>1600</td>
<td>500</td>
<td>-500</td>
</tr>
<tr>
<td>N-well</td>
<td>1000</td>
<td>-1500</td>
<td>20,000</td>
<td>30,000</td>
</tr>
</tbody>
</table>

- Non-silicided layers have significantly larger sheet resistance
- Resistor nonidealities:
 - Temperature coefficient: $R = f(T)$
 - Voltage coefficient: $R = f(V)$
 - Manufacturing Variations
Resistor Example

Goal: \(R = 100 \, k\Omega, \, T_C = 1/R \times dR/dT = 0 \)

Example Solution: N+ and P+ poly resistors in series

\[
R = R_N (1 + T_{CN} \Delta T) + R_P (1 + T_{CP} \Delta T) \\
= \frac{R_N + R_P}{T_C} + \frac{R_N T_{CN} + R_P T_{CP}}{T_C} \Delta T \\
\Rightarrow
\]

\[
R_N = R \left(\frac{1}{T_C} \right) = 20k\Omega = 200 \text{ squares}
\]

\[
R_P = R \left(\frac{1}{T_C} \right) = 80k\Omega = 444.4 \text{ squares}
\]

Voltage Dependence
Voltage Coefficient

Example:
Diffusion resistor

\[R = \frac{V_1 - V_2}{I} \]
\[\approx R_c \left[1 + T_c \left(T - 25^\circ \right) + V_c \left(V_1 - V_2 \right) + B_c \left(\frac{V_1 + V_2}{2} - V_a \right) \right] \]

Resistor Matching

- Types of mismatch:
 - Run-to-run variations
 - Global differences in thickness, doping, etc.
 - Systematic (e.g. contacts)
 - Random variations between devices
- Run-to-run variations in absolute R value: 20+%
 - Can be problematic for termination, bias current, etc.
- Best case: make circuit depend only on ratios
 - E.g., use feedback to control opamp gain
 - With careful layout, can get 0.1 – 1% matching
Systematic Variations from Layout

- Example:

 ![Diagram showing R and 2R with variations from layout]

- Use unit element instead:

 ![Diagram showing use of unit element instead of R]

Common Centroid and Dummies

Example: \(R1 : R2 = 1 : 2 \)

- Dummy \(\rightarrow \) \(0.5 \times R2 + \Delta R \)
- \(0.5 \times R2 - \Delta R \)
- \(R1 \)
- Dummy \(\rightarrow \)
Resistor Layout (cont.)

Serpentine layout for large values:

Better layout (mitigates offset due to thermoelectric effects):

MOSFETs as Resistors

- **Triode region (“square law”):**
 \[
 I_D = \mu C_{ox} \frac{W}{L} \left(V_{GS} - V_{TH} - \frac{V_{DS}}{2} \right) V_{DS} \quad \text{for} \quad V_{GS} - V_{TH} > V_{DS}
 \]

- **Small signal resistance:**
 \[
 \frac{1}{R} = \frac{\partial I_D}{\partial V_{DS}} = \mu C_{ox} \frac{W}{L} (V_{GS} - V_{TH} - V_{DS})
 \]
 \[
 R = \frac{1}{\mu C_{ox} \frac{W}{L} (V_{GS} - V_{TH})} \quad \text{for} \quad V_{GS} - V_{TH} >> V_{DS}
 \]

- **Voltage coefficient:**
 \[
 V_C = \frac{1}{R} \frac{\partial R}{\partial V_{DS}} = \frac{1}{V_{GS} - V_{TH} - V_{DS}}
 \]
MOS Resistors

Example: \(R = 1 \text{ M} \Omega \)

- Large \(R \)-values realizable in small area
- Very large voltage coefficient

Applications:
- **MOSFET-C filters:** (linearization)
- **Biasing:** (>1G \(\Omega \))

\[
R = \frac{1}{\mu C_{ox} \cdot \frac{W}{L} (V_{gs} - V_{th})}
\]

\[
W = \mu C_{ox} R(V_{gs} - V_{th})
\]

\[
L = \frac{1}{100 \mu A/V^2 \times 1 \text{M} \Omega \times 2V} = \frac{1}{200}
\]

\[
V_c \bigg|_{V_{gs}=V_{th}} = \frac{1}{V_{gs} - V_{th}}
\]

\[
= \frac{1}{2V} = 0.5V^{-1}
\]

Resistor Summary

- No or limited support in standard CMOS
 - Large area (compared to FETs)
 - Nonidealities:
 - Large run-to-run variations
 - Temperature coefficient
 - Voltage coefficients (nonlinear)

- Avoid them when you can
 - Especially in critical areas, e.g.
 - Amplifier feedback networks
 - Electronic filters
 - A/D converters
 - We will get back to this point
Capacitors

• Simplest capacitor:

substrate

• What’s the problem with this?

Capacitors

• “Improved” capacitor:

substrate

• Is this only 1 capacitor?
Capacitor Options

<table>
<thead>
<tr>
<th>Type</th>
<th>C [aF/μm²]</th>
<th>V_C [ppm/V]</th>
<th>T_C [ppm/°C]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gate</td>
<td>10,000</td>
<td>Huge</td>
<td>Big</td>
</tr>
<tr>
<td>Poly-poly (option)</td>
<td>1000</td>
<td>10</td>
<td>25</td>
</tr>
<tr>
<td>Metal-metal</td>
<td>50</td>
<td>20</td>
<td>30</td>
</tr>
<tr>
<td>Metal-substrate</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metal-poly</td>
<td>50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Poly-substrate</td>
<td>120</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Junction caps</td>
<td>~1000</td>
<td>Big</td>
<td>Big</td>
</tr>
</tbody>
</table>

MOS Capacitor

- High capacitance in inversion

- **SPICE:**

$$C = \frac{I}{\omega V}$$

$$V = 1V$$

$$\omega = I$$

$$\Rightarrow C = I$$
MOS Capacitor

- High non-linearity, temperature coefficient
- But, still useful in many applications, e.g.:
 - (Miller) compensation capacitor
 - Bypass capacitor (supply, bias)

Capacitor Layout

- Unit elements
- Shields:
 - Etching
 - Fringing fields
- “Common-centroid”
- Wiring and interconnect parasitics

MIM Capacitors

- Some processes have MIM cap as add-on option
 - Separation between metals is much thinner
 - Higher density

- Used to be fairly popular
 - But not as popular now that have many metal layers anyways

Capacitor Geometries

- Horizontal parallel plate
- Vertical parallel plate
- Combinations

“MOM” Capacitors

- Metal-Oxide-Metal capacitor. Free with modern CMOS.
- Use lateral flux ($\sim L_{\text{min}}$) and multiple metal layers to realize high capacitance values

MOM Capacitor Cross Section

- Use a wall of metal and vias to realize high density
- More layers – higher density
 - May want to chop off lower layers to reduce C_{bot}
- Reasonably good matching and accuracy
Distributed Effects

- Can model IC resistors as distributed RC circuits.
- Could use transmission line analysis to find equivalent 2-port parameters.
- Inductance negligible for small IC structures up to \(\sim 10\text{GHz} \).
 \[R \gg \omega L \]

Effective Resistance

- High frequency resistance depends on \(W \), e.g.:
 - \(W=1\mu \) 10k\(\Omega \) resistor works fine at 1GHz
 - \(W=5\mu \) 10k\(\Omega \) resistor drops to 5k\(\Omega \) at 1 GHz
- May need distributed model for accurate freq response
Capacitor Q

- Current density drops as you go farther from contact edge...

Double Contact Structure

- If contact on both edges,
 - R drops 4X
 - Can be a good idea even if not hitting distributed effects
What About Inductors?

- Mostly not used in analog/mixed-signal design
 - Usually too big
 - More of a pain to model than R’s and C’s
 - But they do occasionally get used
- Example inductor app.: shunt peaking
 - Can boost bandwidth by up to 85%!
 - Q not that important (L in series with R)
 - But frequency response may not be flat

Spiral Inductors

- Used widely in RF circuits for small L (~1-10nH).
- Use top metal for Q and high self resonance frequencies.
 - Very good matching and accuracy – if you model them right