Electronic Noise

- Why is noise important?
 - Sets minimum signals we can deal with – often sets lower limit on power

- Signal-to-noise ratio
 - Signal Power \(P_{\text{sig}} \approx (V_{DD})^2 \)
 - Noise Power \(P_{\text{noise}} = kT/C \)
 - SNR = \(P_{\text{sig}} / P_{\text{noise}} \)

- Technology Scaling
 - \(V_{DD} \) goes down \(\rightarrow \) lower signal
 - Increase \(C \) to compensate \(\rightarrow \) increases power

Types of “Noise”

- Interference
 - “fundamental” – deterministic
 - Signal coupling
 - Capacitive, inductive, substrate, etc.
 - Supply noise

- Device noise
 - Caused by discreteness of charge
 - “fundamental” – thermal noise
 - “manufacturing process related” – flicker noise

Resistor Noise Model

- Origin: Brownian Motion
 - Thermally agitated particles
 - E.g. ink in water, electrons in a conductor

- Available noise power:
 - \(P_{n} = kT\Delta f \)
 - Noise power in bandwidth \(\Delta f \) delivered to a matched load
 - Example: \(\Delta f = 1 \text{Hz} \rightarrow P_{n} = 4 \times 10^{-21} \text{W} = -174 \text{ dBm} \)

Resistor Noise Model

- Mean square noise voltage:
 - \(\overline{v_n^2} = 4kT\Delta f \)
Thermal Noise

- Present in all dissipative elements
 - i.e., resistors
- Independent of DC current flow
- Random fluctuations of $v(t)$ or $i(t)$
 - Mean is 0
 - Distribution (pdf) is Gaussian
 - Power spectral density is “white”
 - Up to \simTHz frequencies
 - $k_B T = 4 \times 10^{-21} J \quad (T = 290K = 16.9^{\circ}C)$
- Example:
 $R = 1k \Omega \Rightarrow 4nV/\sqrt{Hz}$
 $1MHz$ bandwidth $\Rightarrow \sigma = 4uV$

Noise of Passive Networks

- Capacitors and inductors only shape spectrum
- Noise calculations
 - Instantaneous voltages add
 - Power spectral densities add
 - RMS voltages do NOT add
- Example: $R_1 + R_2$ in series
- Generalization to arbitrary RLC networks

Shot noise in Diodes

- Zero mean, Gaussian pdf, white
- Independent of temperature
- Example:
 $I_s = 1mA \Rightarrow 17.9pA/\sqrt{Hz}$
 $1MHz$ bandwidth $\Rightarrow \sigma = 17.9nA$

BJT Noise

- Just like diodes: shot noise
 - Collector and base noise partially correlated
- Extrinsic resistors contribute noise
 - Small signal resistors (e.g., r_h) don’t
 - These aren’t physical resistors

FET Noise

- Channel resistance contributes thermal noise
- Channel conductance:
 $$g_{soa} = \frac{W}{L}(V_{OA} - V_{GS}) = g_m$$
- Noise injection is actually distributed across the channel (note γ):
 $$\overline{V_i^2} = 4kT \gamma g_m \Delta f$$

More Fundamental Expression

- More fundamental equation uses channel charge
 [Tsividis]
- When $V_{ds} = 0$, device is truly a resistor:
 $$\overline{I_{ds}^2} = 4kT \frac{W}{L^2} C_{ox} (V_{GS} - V_T) \Delta f$$
Strong Inversion Noise

- In saturation, drain current noise is
 \[\overline{I_d^2} = 4kT \frac{2W}{3L} \mu C_{ox} (V_{GS} - V_T) \Delta f \]

- For long channel model, can substitute \(g_m \) for the above factor.

- In practice, form involving actual inversion charge is more accurate
 - This is what SPICE/BSIM use

Weak Inversion

- Weak inversion: BJT \(\rightarrow \) shot noise.
 - Result should be \(\sim 2g_{ds} \)

- Get the same result from inversion charge expression:
 \[Q_i = W_i \frac{Q_{id}}{2} + Q_{id} = \frac{L^2}{2\mu C_{ox}} \frac{q V_{DS}}{q} \left(1 + e^{-q V_{DS}/kT} \right) \]

- \(\overline{I_d^2} = 2q I_{DS} \left(1 + e^{-q V_{DS}/kT} \right) \Delta f \)

FET Noise Model

- Model neglects intrinsic gate noise
- BSIM3 does not directly include \(\alpha \)

Thermal Noise for Short Channels

- Strong inversion \(\rightarrow \) thermal noise
 - Drain current: \(g_{mot} \) is what you really care about
 \[\overline{I_d^2} = 4kT \gamma g_{mot} \Delta f = 4kT \gamma g_m \Delta f \]
 - \(g_m \) more convenient for input-referred noise
 - For low field (long \(L \)), \(\gamma = 2/3 \) relates \(g_m \) to \(g_{ds} \)
 - For high field, use \(\alpha \) to capture increase in noise
 - High-field noise can be 2-3 times larger than low field

- MOS actually has intrinsic gate induced noise (142/244 topic)
- Gate leakage \(\rightarrow \) shot noise

1/f Noise

- Flicker noise
 - \(K_{NMOS} = 2.0 \times 10^{-29} \text{ AF} \)
 - \(K_{PMOS} = 3.5 \times 10^{-30} \text{ AF} \)
 - Strongly process dependent
 \[\overline{I_{f/ff}} = \frac{K_{fD} I_{D}}{L^2 C_{ox}} \Delta f \]

- Example: \(I_D = 10 \mu A, \ L = 1 \mu m, \ C_{ox} = 5.3 \text{fF/}\mu m^2, \ f_L = 1 \text{MHz} \)
 - \(f_L = 1 \text{Hz} \) \(\Rightarrow \sigma = 722 \text{pA} \)
 - \(f_L = 1 \text{year} \) \(\Rightarrow \sigma = 1083 \text{pA} \)
 \[\overline{I_{f/ff,\text{total}}} = \overline{I_{f10}} + \frac{K_{fD} I_{D} \Delta f}{L^2 C_{ox} f} = \frac{K_{fD} I_{D} \ln f_L}{L^2 C_{ox} f} \]

1/f Noise Corner Frequency

- Definition (MOS)
 \[K_{fD} \frac{1}{f_{ce}} = 4kT \gamma g_{mot} \]
 \[f_{ce} = \frac{K_{fD}}{4kT \gamma g_{mot}} = \frac{K_f}{8kT \gamma C_{ox}} \]

- Example:
 - \(V^* = 200 \text{mV}, \ \gamma = 1 \)
 - \(L = 0.35 \mu m \) \(\Rightarrow \) NMOS 192kHz PMOS 34kHz
 - \(L = 1.00 \mu m \) \(\Rightarrow \) 24kHz 4kHz
Noise Calculations

- Method:
 1) Create small-signal model
 2) All inputs = 0 (linear superposition)
 3) Pick output v_o or i_o
 4) For each noise source v_x, i_x
 Calculate $H_x(s) = v_o(s) / v_x(s)$ ($... i_o, i_x$)
 5) Total noise at output is:
 $$v_{ox}^2(f) = \sum_{x} H_x(s) \int_{-\infty}^{\infty} v_x(f)$$
 simpler notation: $v_{ox}^2(f) = S_v(f)$

Tedious but simple …

Example: Common Source