Noise Variance in a Real Circuit: Sample and Hold

- Noise on the capacitor:
 \[v_{on}^2(f) = 4k_B T R \left(\frac{1}{1 + sRC} \right)^2 \]
 \[\Rightarrow \overline{v_{oT}^2} = \int_{0}^{\infty} v_{on}^2(f) df = \frac{k_B T}{C} \]

- So effective bandwidth is:
 \[4k_B T R \Delta f = \frac{k_B T}{C} \]
 \[\Rightarrow \Delta f = \frac{1}{4RC} = \frac{\pi}{2} f_o \]
SPICE Verification

Energy-Based Analysis
Useful Integrals

\[\int_0^\infty \frac{1}{1 + \frac{s}{\omega_0}} \, df = \frac{\omega_0}{4} \]

\[\int_0^\infty \frac{1}{1 + \frac{s}{\omega_0 Q} + \frac{s^2}{\omega_0^2}} \, df = \frac{\omega_0 Q}{4} \]

\[\int_0^\infty \frac{s}{\omega_0} + 1 \frac{1}{1 + \frac{s}{\omega_0 Q} + \frac{s^2}{\omega_0^2}} \, df = \frac{\omega_0 Q}{4} \left(\frac{\omega_0^2}{\omega_0^2 + 1} \right) \]

CS Amplifier

\[v_{in}(f) = 4k_d T \left(\frac{1}{R_L} + \frac{2}{3} g_m \right) R_L \left[\frac{1}{1 + s R_L C_L} \right]^e \]

\[v_{out} = 4k_d T \left(\frac{1}{R_L} + \frac{2}{3} g_m \right) R_L^2 \frac{1}{4 R_L C_L} \frac{1}{1 + s R_L C_L} \]

\[= 4k_d T \left(\frac{1}{R_L} + \frac{2}{3} g_m R_L \right) \frac{1}{4 R_L C_L} \]

\[= \frac{k_T}{C_L} \left(1 + \frac{2}{3} g_m R_L \right) \]

\[= \frac{k_T}{C_L} \left(1 + \frac{2}{3} |A_m| \right) \]

\[= \frac{k_T}{C_L} R_T \]

\[= \frac{V_{in}}{V_{out}} \]
Signal-To-Noise Ratio

- **SNR:**
 \[SNR = \frac{P_{\text{sig}}}{P_{\text{noise}}} \]

- **Signal Power (sinusoidal source):**
 \[P_{\text{sig}} = \frac{1}{2} V^2 \text{zero–peak} \]

- **Noise Power (assuming thermal noise dominates):**
 \[P_{\text{noise}} = \frac{k_b T}{C} n_f \]

- **So:**
 \[
 SNR = \frac{\frac{1}{2} CV^2_{\text{zero–peak}}}{n_f k_b T} \]

- **SNR** \(\uparrow \) +6dB
 \[C \downarrow \times 4 \]

dB versus Bits

- **Quantization “noise”**
 - **Quantizer step size:** \(\Delta \)
 - **Box-car pdf variance:** \(S_Q = \frac{\Delta^2}{12} \)

- **SNR of N-Bit sinusoidal signal**
 - **Signal power**
 \[P_{\text{sig}} = \frac{1}{2} \left(2^N \frac{\Delta}{2} \right)^2 \]
 - **SNR**
 \[SNR = \frac{P_{\text{sig}}}{S_Q} = 1.5 \times 2^N \]
 - **6.02 dB per Bit**
 \[= \left(1.76 + 6.02 N \right) \text{ dB} \]
SNR versus Power

- 1 Bit → 6dB → 4x SNR
- 4x SNR → 4x C
- Circuit bandwidth \(\sim g_m/C \) → 4x \(g_m \)
- Keeping \(V^* \) constant → 4x \(I_D \), 4x W

- Thermal noise limited circuit:
 - Each bit QUADRUPLES power!

- Overdesign is expensive
 - Better do the analysis right!

Analog Circuit Dynamic Range

- Biggest signal set by \(V_{DD} \). So, for (single-ended) sinusoid:
 \[
 V_{\text{max}}(\text{rms}) = \frac{1}{\sqrt{2}} \frac{V_{DD}}{2}
 \]

- The noise is
 \[
 V_n(\text{rms}) = \sqrt{n_f \frac{k_B T}{C}}
 \]

- So the dynamic range in dB is:
 \[
 DR = \frac{V_{\text{max}}(\text{rms})}{V_n(\text{rms})} = \frac{V_{DD} \sqrt{C}}{\sqrt{8n_f k_B T}} \quad [V/V]
 \]
 \[
 = 20 \log_{10} \left(V_{DD} \sqrt{\frac{C}{n_f}} \right) + 75 \quad [\text{dB}] \text{ with } C \text{ in [pF]}
 \]
Analog Circuit Dynamic Range

- Biggest swing set by supply voltage V_{DD}
 \[SNR = \frac{1}{2} \frac{CV_{DD}^2}{n_f k_b T} \]

- Modern ICs: $V_{DD} \approx 1V$, $C < \approx 1nF$ ($n_f = 1$)
 - DR < 100dB (~16 Bits)

- PCB circuits with 30V and discrete C of ~100nF:
 - DR < 140dB (23 Bits)
 - A 40dB (~7 Bit) advantage!

- Note: can break this barrier with oversampling

Sampled Noise Spectrum

\[S_n(f) = \frac{k_b T_c}{C} \frac{2}{f_s} \frac{1 - e^{-2\pi f f_c}}{1 + e^{-2\pi f f_c}(1 - \cos 2\pi f T)} \]
\[a = \frac{T}{R_c C} = \frac{T}{\tau} \quad \text{and} \quad T = \frac{1}{f_s} \]
\[\int_0^\infty S_n(f) df = \frac{k_b T_c}{C} \]

- What if RC doesn’t completely settle every cycle?
 - Noise between samples correlated → spectrum not white
 - If $T/\tau > 3$, correlation small
 - Sampled spectrum white
 - In practice usually the case
Periodic Noise Analysis

SpectreRF PNOISE: check noisetype=timedomain noisetimepoints= as alternative to ZOH. noiseskipcount=large might speed up things in this case.

Two-Stage Amplifier
Input Equivalent Noise

Equivalent Noise Generators

- Model for noisy two-port:
 - *Noiseless* two-port
 - Plus equivalent input noise sources

- In general, v_n and i_n are correlated.
 - Ignore that for now
Finding the Equivalent Generators

- Find v_n and i_n by opening and shorting the input

 - **Shorted input:**
 - Output noise due only to v_n
 - **Open input:**
 - Output noise due only to i_n

Role of Source Resistance

- If R_s is large:
 - Design amplifier with low i_n (MOS)
- If R_s is low:
 - Design amplifier with low v_n (BJT)

- For a given R_s, there is an optimal v_n/i_n ratio
 - Alternatively, for a given amp, there is an optimal R_s
Total Output Noise

\[\overline{v_n^2} = \left(\overline{v_n^2} A_s^2 + \overline{v_i^2} A_s^2 \right) \left(\frac{R_{in}}{R_{in} + R_s} \right)^2 + \left(\frac{R_{in}}{R_{in} + R_s} \right)^2 R_s^2 \overline{v_i^2} A_s^2 \]

\[= \left(\overline{v_n^2} + \overline{v_i^2} R_s^2 + \overline{v_i^2} R_s^2 \right) \left(\frac{R_{in}}{R_{in} + R_s} \right)^2 A_s^2 \]

New Equivalent Generator

\[\overline{v_{eq}^2} = \overline{v_n^2} + \overline{v_i^2} R_s^2 \]

- With known \(R_s \), total noise can be lumped into one \(\overline{v_{eq}^2} \)
Optimum Source Impedance

- Can use this to optimize source impedance for minimum added noise from two-port (noise figure):

\[R_n \equiv \frac{v_n^2}{4kT\Delta f} \quad \quad G_n \equiv \frac{i_n^2}{4kT\Delta f} \]

\[R_{opt} = \sqrt{\frac{R_n}{G_n}} = \sqrt{\frac{v_n^2}{i_n^2}} \]

Correlated Noise Sources

- Partition \(i_n \) into two components:
 - Correlated ("parallel") to \(v_n \)
 - Uncorrelated ("perpendicular") to \(v_n \)

\[i_n = i_c + i_u \]

\[<i_u, v_n> = 0 \]

\[i_c = Y_C v_n \]
Correlated Noise Sources (cont.)

Finding Y_c:

\[\bar{v}_{eq}^2 = \bar{v}_n^2 + Z_s^2 \bar{i}_n^2 \]
\[= \bar{v}_n^2 + Z_s^2 (\bar{i}_c + \bar{i}_u)^2 \]
\[= \bar{v}_n^2 + Z_s^2 \bar{i}_c^2 + Z_s^2 \bar{i}_u^2 \]
\[= \bar{v}_n^2 (1 + Z_s^2 Y_c^2) + Z_s^2 \bar{i}_u^2 \]
\[\bar{v}_n^2 = \alpha_1^2 \bar{v}_1^2 + \alpha_2^2 \bar{i}_2^2 \]
\[\bar{i}_n^2 = \beta_1^2 \bar{i}_1^2 + \beta_2^2 \bar{v}_3^2 \]
\[\bar{i}_c^2 = \frac{i_c^2}{v_n^2} \]
\[\bar{i}_u^2 = \frac{\beta_2^2 \bar{i}_2^2}{\alpha_1^2 \bar{v}_1^2 + \alpha_2^2 \bar{i}_2^2} \]

Equivalent Noise Voltage (cor)

- Since the above expression is the sum of two uncorrelated noise voltages, we have

\[\bar{v}_{eq}^2 = \bar{v}_n^2 \left| 1 + Y_C Z_S \right|^2 + \left| Z_S \right|^2 \bar{i}_u^2 \]

- Now we can continue as before to find

\[B_{opt} = B_s = -B_c \]
\[G_{opt} = G_s = \sqrt{\frac{G_u}{R_n} + G_c^2} \]