Bias Current Sources

• What makes a current source a current source?
 • High output impedance

• Other important properties:
 • Voltage range (V_{min})
 • Noise
 • Accuracy

• Techniques: cascoding, gain boosting
Bias Current Source

• Is this a “good” bias current source?

Current Mirror

• Better approach: current mirror
Noise

\[i_{\text{on}}^2 = i_{d1}^2 + M^2 i_{d2}^2 \]
\[= 4k_B T g_m (g_m + M^2 g_m) |f \Delta f| \]
\[= 4k_B T g_m (1 + M) |f \Delta f| \]
\[= 4k_B T |f \Delta f| \]

\[R_N = \frac{1}{g_m} \frac{1}{1 + M} \]
\[= \frac{r_o}{a_{\text{no}}} \frac{1}{1 + M} \ll R_o = r_o \]

• M2 adds noise
 • Choose small M (power), or
 • Filter at gate of M1

• Current source FOMs
 • Output resistance \(R_o \)
 • Noise resistance \(R_N \)
 • Active sources boost \(R_o \), not \(R_N \)

Noise cont’d

• \(I_o^2 \) from transistor current source much larger than real \(R \) with same output impedance

• So why do we use transistors as current sources?
V_{\text{min}} versus Noise

- Voltage required for large r_o ("saturation"): $V_{\text{min}} \sim V^*$

- Minimum noise (for given I_D):
 - \rightarrow large R_N
 - \rightarrow large V^* (and, hence, V_{min})

- Eats into signal swing

\[
V_{\text{min}} = k \times V^* \quad \text{typ.} \quad k = 1\ldots2
\]

\[
R_N = \frac{1}{\gamma g_m} \left(1 + M \right) = \frac{V_{\text{min}}}{2\gamma kI_D} \left(1 + M \right)
\]

Bipolar’s, GaAs, ...

\[
\begin{align*}
\overline{I_m} &= \overline{I_e} \left(\frac{1}{1 + g_m R_e} \right) + \frac{g_m R_e}{1 + g_m R_e} \Delta f \quad \overline{V_e} = 0 \\
\text{a) } g_m R_e &= 0 & \overline{I_m} &= 2kT g_m \Delta f \\
R_N &= \frac{2V_f}{I_c} \quad \text{set by } I_c \\
\text{b) } g_m R_e &>> 1 & \overline{I_m} &= 4kT \frac{1}{R_e} \Delta f \\
R_N &= R_e = \frac{V_{\text{min}}}{I_c} \left(\frac{V_{\text{sat}} - V_{\text{min}}}{V_{\text{min}}} \right) \quad \text{compare } R_{N,\text{MOS}} = \frac{V_{\text{min}}}{I_D} \frac{1}{2\gamma k}
\end{align*}
\]

- Increasing R_E lowers noise
- Same in MOS, BJT, etc.
- V_{min} always trades with noise
- Lowest possible noise: resistor (large V_{min})
Cascoding

Output Resistance
\[R_{\text{out}} = f(k) \]

\[V_{DS1} = kV^*_1 \]

How to choose \(k \)?
- Large \(k \) useful only for large \(V_{\min} \)
- But, little penalty for large \(k \) and small \(V_{\min} \)
 - Typically choose \(k > 1 \)
 - Get benefit if \(V_{ds} \) is big

High-Swing Cascode Biasing
- Need circuit for generating \(V_{bias2} \)
- Accuracy important for high \(V_{ds}/\text{high } R_o \)
 - In practice, not quite as critical (\(V_{ds} \) often low)
- Assume you’ve seen these before
 - Review G & M if not
High-Swing Bias Example

Gain Boosting

- Use feedback to further increase R_{out}
 - No increase of V_{min} (unlike double cascode)
Local Feedback and Stability

Gain-Boosted Z_{out}
Pole-Zero Doublets

If it works, do it again!

- Since in advanced scaled CMOS $g_{m}r_o$ is small, we can use nested gain boosting for higher output impedance.
- Watch out for pole-zero doublets!
Noise Analysis

Noise Summary