Bias Current Sources

- What makes a current source a current source?
 - High output impedance

- Other important properties:
 - Voltage range (V_{min})
 - Noise
 - Accuracy

- Techniques: cascoding, gain boosting

Current Mirror

- Better approach: current mirror

Noise

\[\frac{I_{in}}{I_{out}} = \frac{1}{1 + M} \]

- M2 adds noise
 - Choose small M (power), or
 - Filter at gate of M1

- Current source FOMs
 - Output resistance R_o
 - Noise resistance R_n
 - Active sources boost R_o, not R_n

Bias Current Source

- Is this a “good” bias current source?

Noise cont’d

- I_{in}^2 from transistor current source much larger than real R with same output impedance

- So why do we use transistors as current sources?
V\text{\scriptsize{\text{min}}} \text{ versus Noise}

- Voltage required for large r_g ("saturation"): $V_{\text{min}} \sim V^*$
- Minimum noise (for given I_D):
 - \Rightarrow large R_g
 - \Rightarrow large V^* (and, hence, V_{min})
- Eats into signal swing...

\[R_\text{g} = \frac{1}{\frac{1}{2}m_{\text{g}} + 1 + M} \]
\[= \frac{V_{\text{sat}}}{2\text{g}_{\text{m}}} \]

Output Resistance

$V_{\text{sat}} = kV^*$

- How to choose k?
 - Large k useful only for large V_{sat}
 - But, little penalty for large k and small V_{sat}
 - Typically choose $k > 1$
 - Get benefit if V_{sat} is big

Bipolar’s, GaAs, …

\[R_\text{g} = \frac{1}{\frac{1}{2}m_{\text{g}} + 1 + M} \]
\[= \frac{V_{\text{sat}}}{2\text{g}_{\text{m}}} \]

a) $g_m R_\text{g} = 0$

- Increasing R_g lowers noise
- Same in MOS, BJT, etc.
- V_{min} always trades with noise
- Lowest possible noise: resistor (large V_{min})

b) $g_m R_\text{g} \gg 1$

\[R_\text{g} = \frac{1}{g_m} \frac{1}{R_\text{g}} \]

\[R_{\text{in}} = \frac{V_{\text{sat}}}{V_{\text{in}}} \frac{1}{2\text{g}_{\text{m}}} \]

Cascoding

- Need circuit for generating V_{bias}

- Accuracy important for high V_{sat}/high R_g
 - In practice, not quite as critical (V_{sat} often low)

- Assume you’ve seen these before
 - Review G & M if not
High-Swing Bias Example

Gain Boosting
- Use feedback to further increase R_{out}
 - No increase of V_{min} (unlike double cascode)

Gain-Boosted Z_{out}

Pole-Zero Doublets

Local Feedback and Stability

If it works, do it again!
- Since in advanced scaled CMOS $g_m r_f$ is small, we can use nested gain boosting for higher output impedance.
- Watch out for pole-zero doublets!
Noise Analysis

Noise Summary

Cascode Sizing