Feedback

- Assume you are familiar with feedback benefits, issues
 - Review: G&M Ch. 8 & 9, Razavi Ch. 8

- Focus here on:
 - Stability
 - Analysis and simulation
 - Settling
 - Often amplifying pulses and not sinusoids
 - More next lecture

Generic Feedback Circuit

- Open-loop gain: \(a \)
- Feedback factor: \(f \)
- Loop gain: \(T = \frac{a_f}{f} \)
- Closed-loop gain: \(A = \frac{V_o}{V_i} = a_f \cdot \frac{1}{1 + f} \)

Electronic Feedback Circuit

- Careful with mapping circuit feedback to generic diagram...

Stability

- Nearly all circuits are actually non-linear and time-varying
 - "Poles" only accurate for given bias, temp., etc.

- What we usually mean by stability:
 - Circuit always converges to the "origin" for zero input within finite time
 - (Exponential stability)
 - Another common definition: BIBO stability

Stability In Practice

- Linearize the circuit and look at its poles
 - Remember: this is only an approximation!
 - Perform linear analysis over several corners, temps, supplies, etc.
 - May want to do a couple of transient sims too
Linear Circuit Stability

- Stability set by $T(s)$
- $T(s)$ is an open-loop parameter - need to break the loop
 - Easy to do in hand analysis: break at controlled source
 - Not as easy in simulation...

Simulating Stability

- Measure T_v and T_i, then calculate actual T

Middlebrook Method (1975)

- True Loop Gain:
 - $T = g_v\frac{Z_1Z_2}{Z_1 + Z_2}$

 Solving yields:
 - $T = \frac{F_1T_1 - 1}{F_1 + T_1 + 2}$

 • Measure T_v and T_i, then calculate actual T

Phase Margin

- Approximate method to evaluate stability: phase margin
 - Works well for most circuits of interest
 - Sometimes have to use Nyquist stability test

Common Approach

Multi-Loop Feedback