Problem with Common-Mode

• What if $I_L < \frac{I_{\text{ail}}}{2}$?
 • Will capacitive feedback solve this?

• Typical solution: Common-mode feedback
 • Sense CM at output
 • Adjust some knob to alter CM
Common-Mode Sensing

- Simplest CM sensor: pair of resistors
- Resistors load the OTA (reduce gain)
 - If make R large, get slow V_{cm} tracking
 - Is this a problem?

Sensing Scheme #2

- Isolated CM sensing
 - Works reasonably well
 - But hard to use with wide swing amplifier output
Capacitive Sensing

- Capacitive sensing avoids DC loading
 - (still creates AC load though)
- Needs to be reset to remove initial offset
 - Just like capacitive feedback

Adjusting Common-Mode

- Really only two knobs:
 - Knob A: adjust load current
 - Knob B: adjust tail current
Example Common-Mode Feedback

- Secondary amplifier enforces $V_{cm} = V_{cm_{\text{ref}}}$
- Place dominant pole at V_{bp}, or V_{cm}?

CMRR Fix

- What if two PMOS transistors aren’t perfectly matched?
Capacitive CMFB

- How to choose C_{cm}?
 - "Small": CM loop gain low
 - "Large": Loading on diff. output high

Initialization
“Continuous” CMFB